L(s) = 1 | + 14·5-s − 170·7-s − 243·9-s + 250·11-s + 169·13-s + 1.06e3·17-s + 78·19-s + 1.57e3·23-s − 2.92e3·25-s − 2.57e3·29-s − 8.65e3·31-s − 2.38e3·35-s − 1.09e4·37-s + 1.05e3·41-s + 5.90e3·43-s − 3.40e3·45-s − 5.96e3·47-s + 1.20e4·49-s − 2.90e4·53-s + 3.50e3·55-s + 1.39e4·59-s + 3.28e4·61-s + 4.13e4·63-s + 2.36e3·65-s + 6.95e4·67-s − 5.05e4·71-s − 4.67e4·73-s + ⋯ |
L(s) = 1 | + 0.250·5-s − 1.31·7-s − 9-s + 0.622·11-s + 0.277·13-s + 0.891·17-s + 0.0495·19-s + 0.621·23-s − 0.937·25-s − 0.569·29-s − 1.61·31-s − 0.328·35-s − 1.31·37-s + 0.0975·41-s + 0.486·43-s − 0.250·45-s − 0.393·47-s + 0.719·49-s − 1.42·53-s + 0.156·55-s + 0.520·59-s + 1.13·61-s + 1.31·63-s + 0.0694·65-s + 1.89·67-s − 1.18·71-s − 1.02·73-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(832s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.318389418 |
L(21) |
≈ |
1.318389418 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−p2T |
good | 3 | 1+p5T2 |
| 5 | 1−14T+p5T2 |
| 7 | 1+170T+p5T2 |
| 11 | 1−250T+p5T2 |
| 17 | 1−1062T+p5T2 |
| 19 | 1−78T+p5T2 |
| 23 | 1−1576T+p5T2 |
| 29 | 1+2578T+p5T2 |
| 31 | 1+8654T+p5T2 |
| 37 | 1+10986T+p5T2 |
| 41 | 1−1050T+p5T2 |
| 43 | 1−5900T+p5T2 |
| 47 | 1+5962T+p5T2 |
| 53 | 1+29046T+p5T2 |
| 59 | 1−13922T+p5T2 |
| 61 | 1−32882T+p5T2 |
| 67 | 1−69566T+p5T2 |
| 71 | 1+50542T+p5T2 |
| 73 | 1+46750T+p5T2 |
| 79 | 1+19348T+p5T2 |
| 83 | 1−87438T+p5T2 |
| 89 | 1−94170T+p5T2 |
| 97 | 1−182786T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.377229853524475265579025959374, −8.868530185821819237018558081424, −7.72751070452978243477673560153, −6.76000859915714781081870400028, −5.97215373829448459898122953185, −5.30072386428473905638344010075, −3.70036652818864040850115564705, −3.20769602123505276858984146027, −1.90440122665330166531145249177, −0.50343746788355741463112735588,
0.50343746788355741463112735588, 1.90440122665330166531145249177, 3.20769602123505276858984146027, 3.70036652818864040850115564705, 5.30072386428473905638344010075, 5.97215373829448459898122953185, 6.76000859915714781081870400028, 7.72751070452978243477673560153, 8.868530185821819237018558081424, 9.377229853524475265579025959374