Properties

Label 2-832-1.1-c3-0-4
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.323·3-s − 10.9·5-s − 6.41·7-s − 26.8·9-s − 54.0·11-s − 13·13-s + 3.53·15-s − 26.1·17-s − 59.7·19-s + 2.07·21-s + 107.·23-s − 5.65·25-s + 17.4·27-s − 135.·29-s + 83.1·31-s + 17.4·33-s + 70.0·35-s + 98.8·37-s + 4.20·39-s + 436.·41-s − 101.·43-s + 293.·45-s − 94.0·47-s − 301.·49-s + 8.47·51-s + 226.·53-s + 590.·55-s + ⋯
L(s)  = 1  − 0.0622·3-s − 0.977·5-s − 0.346·7-s − 0.996·9-s − 1.48·11-s − 0.277·13-s + 0.0608·15-s − 0.373·17-s − 0.721·19-s + 0.0215·21-s + 0.972·23-s − 0.0452·25-s + 0.124·27-s − 0.865·29-s + 0.481·31-s + 0.0921·33-s + 0.338·35-s + 0.439·37-s + 0.0172·39-s + 1.66·41-s − 0.359·43-s + 0.973·45-s − 0.291·47-s − 0.879·49-s + 0.0232·51-s + 0.587·53-s + 1.44·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5243990135\)
\(L(\frac12)\) \(\approx\) \(0.5243990135\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 13T \)
good3 \( 1 + 0.323T + 27T^{2} \)
5 \( 1 + 10.9T + 125T^{2} \)
7 \( 1 + 6.41T + 343T^{2} \)
11 \( 1 + 54.0T + 1.33e3T^{2} \)
17 \( 1 + 26.1T + 4.91e3T^{2} \)
19 \( 1 + 59.7T + 6.85e3T^{2} \)
23 \( 1 - 107.T + 1.21e4T^{2} \)
29 \( 1 + 135.T + 2.43e4T^{2} \)
31 \( 1 - 83.1T + 2.97e4T^{2} \)
37 \( 1 - 98.8T + 5.06e4T^{2} \)
41 \( 1 - 436.T + 6.89e4T^{2} \)
43 \( 1 + 101.T + 7.95e4T^{2} \)
47 \( 1 + 94.0T + 1.03e5T^{2} \)
53 \( 1 - 226.T + 1.48e5T^{2} \)
59 \( 1 + 811.T + 2.05e5T^{2} \)
61 \( 1 - 291.T + 2.26e5T^{2} \)
67 \( 1 + 551.T + 3.00e5T^{2} \)
71 \( 1 - 838.T + 3.57e5T^{2} \)
73 \( 1 - 762.T + 3.89e5T^{2} \)
79 \( 1 + 252.T + 4.93e5T^{2} \)
83 \( 1 + 1.09e3T + 5.71e5T^{2} \)
89 \( 1 - 1.05e3T + 7.04e5T^{2} \)
97 \( 1 + 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.833498270325033024829005194722, −8.855990637637834936721119343712, −8.046939319752293632134437290816, −7.46210078305654069017768482321, −6.32507422365881582548373358959, −5.36409443900457599284469607223, −4.44029697829553050538199169511, −3.25411189032019217647311284834, −2.41524816107859034315574960911, −0.37539759691737470518153225657, 0.37539759691737470518153225657, 2.41524816107859034315574960911, 3.25411189032019217647311284834, 4.44029697829553050538199169511, 5.36409443900457599284469607223, 6.32507422365881582548373358959, 7.46210078305654069017768482321, 8.046939319752293632134437290816, 8.855990637637834936721119343712, 9.833498270325033024829005194722

Graph of the $Z$-function along the critical line