Properties

Label 2-832-1.1-c3-0-38
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.45·3-s + 14.4·5-s − 27.3·7-s + 44.5·9-s + 58·11-s + 13·13-s + 122.·15-s − 37.2·17-s + 28.1·19-s − 231.·21-s + 205.·23-s + 84.0·25-s + 148.·27-s + 6·29-s − 202.·31-s + 490.·33-s − 395.·35-s + 187.·37-s + 109.·39-s − 336.·41-s − 204.·43-s + 643.·45-s + 370.·47-s + 406.·49-s − 314.·51-s − 64.2·53-s + 838.·55-s + ⋯
L(s)  = 1  + 1.62·3-s + 1.29·5-s − 1.47·7-s + 1.64·9-s + 1.58·11-s + 0.277·13-s + 2.10·15-s − 0.530·17-s + 0.340·19-s − 2.40·21-s + 1.86·23-s + 0.672·25-s + 1.05·27-s + 0.0384·29-s − 1.17·31-s + 2.58·33-s − 1.91·35-s + 0.835·37-s + 0.451·39-s − 1.28·41-s − 0.726·43-s + 2.13·45-s + 1.15·47-s + 1.18·49-s − 0.864·51-s − 0.166·53-s + 2.05·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.710432215\)
\(L(\frac12)\) \(\approx\) \(4.710432215\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 13T \)
good3 \( 1 - 8.45T + 27T^{2} \)
5 \( 1 - 14.4T + 125T^{2} \)
7 \( 1 + 27.3T + 343T^{2} \)
11 \( 1 - 58T + 1.33e3T^{2} \)
17 \( 1 + 37.2T + 4.91e3T^{2} \)
19 \( 1 - 28.1T + 6.85e3T^{2} \)
23 \( 1 - 205.T + 1.21e4T^{2} \)
29 \( 1 - 6T + 2.43e4T^{2} \)
31 \( 1 + 202.T + 2.97e4T^{2} \)
37 \( 1 - 187.T + 5.06e4T^{2} \)
41 \( 1 + 336.T + 6.89e4T^{2} \)
43 \( 1 + 204.T + 7.95e4T^{2} \)
47 \( 1 - 370.T + 1.03e5T^{2} \)
53 \( 1 + 64.2T + 1.48e5T^{2} \)
59 \( 1 - 784.T + 2.05e5T^{2} \)
61 \( 1 - 480.T + 2.26e5T^{2} \)
67 \( 1 - 815.T + 3.00e5T^{2} \)
71 \( 1 + 40.4T + 3.57e5T^{2} \)
73 \( 1 + 104.T + 3.89e5T^{2} \)
79 \( 1 + 82.6T + 4.93e5T^{2} \)
83 \( 1 + 833.T + 5.71e5T^{2} \)
89 \( 1 + 795.T + 7.04e5T^{2} \)
97 \( 1 - 188.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.471842830991494465474645041024, −9.195905225845445322179757745507, −8.529040033471456146111839533862, −6.95378905136179733736024568391, −6.71183191772306024389692947003, −5.53094170918388284789996120635, −3.96419340480302127615832325086, −3.24033605899437219108077351411, −2.33530728722036568084927128298, −1.24122346578891067513414252201, 1.24122346578891067513414252201, 2.33530728722036568084927128298, 3.24033605899437219108077351411, 3.96419340480302127615832325086, 5.53094170918388284789996120635, 6.71183191772306024389692947003, 6.95378905136179733736024568391, 8.529040033471456146111839533862, 9.195905225845445322179757745507, 9.471842830991494465474645041024

Graph of the $Z$-function along the critical line