Properties

Label 2-832-1.1-c3-0-17
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 19·5-s + 3·7-s − 2·9-s − 2·11-s + 13·13-s − 95·15-s + 77·17-s − 58·19-s + 15·21-s − 76·23-s + 236·25-s − 145·27-s + 6·29-s + 292·31-s − 10·33-s − 57·35-s − 207·37-s + 65·39-s + 240·41-s − 317·43-s + 38·45-s + 375·47-s − 334·49-s + 385·51-s + 692·53-s + 38·55-s + ⋯
L(s)  = 1  + 0.962·3-s − 1.69·5-s + 0.161·7-s − 0.0740·9-s − 0.0548·11-s + 0.277·13-s − 1.63·15-s + 1.09·17-s − 0.700·19-s + 0.155·21-s − 0.689·23-s + 1.88·25-s − 1.03·27-s + 0.0384·29-s + 1.69·31-s − 0.0527·33-s − 0.275·35-s − 0.919·37-s + 0.266·39-s + 0.914·41-s − 1.12·43-s + 0.125·45-s + 1.16·47-s − 0.973·49-s + 1.05·51-s + 1.79·53-s + 0.0931·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.825968000\)
\(L(\frac12)\) \(\approx\) \(1.825968000\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - p T \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
5 \( 1 + 19 T + p^{3} T^{2} \)
7 \( 1 - 3 T + p^{3} T^{2} \)
11 \( 1 + 2 T + p^{3} T^{2} \)
17 \( 1 - 77 T + p^{3} T^{2} \)
19 \( 1 + 58 T + p^{3} T^{2} \)
23 \( 1 + 76 T + p^{3} T^{2} \)
29 \( 1 - 6 T + p^{3} T^{2} \)
31 \( 1 - 292 T + p^{3} T^{2} \)
37 \( 1 + 207 T + p^{3} T^{2} \)
41 \( 1 - 240 T + p^{3} T^{2} \)
43 \( 1 + 317 T + p^{3} T^{2} \)
47 \( 1 - 375 T + p^{3} T^{2} \)
53 \( 1 - 692 T + p^{3} T^{2} \)
59 \( 1 - 214 T + p^{3} T^{2} \)
61 \( 1 - 8 p T + p^{3} T^{2} \)
67 \( 1 - 782 T + p^{3} T^{2} \)
71 \( 1 - 1057 T + p^{3} T^{2} \)
73 \( 1 - 1174 T + p^{3} T^{2} \)
79 \( 1 + 892 T + p^{3} T^{2} \)
83 \( 1 - 704 T + p^{3} T^{2} \)
89 \( 1 - 6 T + p^{3} T^{2} \)
97 \( 1 - 830 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.751337333900448937411325019774, −8.547826507927824777458276813255, −8.243850230091312876490731517223, −7.60268565652320666338760423282, −6.58187762536616659676182599703, −5.22707662283289051760328318190, −4.02110140195504520010367472335, −3.51282270613976165425716670769, −2.41326882379388916588095305629, −0.70546216817578360793524888031, 0.70546216817578360793524888031, 2.41326882379388916588095305629, 3.51282270613976165425716670769, 4.02110140195504520010367472335, 5.22707662283289051760328318190, 6.58187762536616659676182599703, 7.60268565652320666338760423282, 8.243850230091312876490731517223, 8.547826507927824777458276813255, 9.751337333900448937411325019774

Graph of the $Z$-function along the critical line