Properties

Label 2-832-1.1-c3-0-16
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.82·3-s − 3.31·5-s − 35.2·7-s − 12.3·9-s + 14.7·11-s + 13·13-s − 12.6·15-s + 111.·17-s + 6.84·19-s − 134.·21-s − 37.2·23-s − 114.·25-s − 150.·27-s − 81.7·29-s + 87.4·31-s + 56.2·33-s + 116.·35-s + 159.·37-s + 49.7·39-s + 266.·41-s + 377.·43-s + 40.9·45-s + 344.·47-s + 896.·49-s + 425.·51-s − 241.·53-s − 48.6·55-s + ⋯
L(s)  = 1  + 0.735·3-s − 0.296·5-s − 1.90·7-s − 0.458·9-s + 0.402·11-s + 0.277·13-s − 0.217·15-s + 1.58·17-s + 0.0826·19-s − 1.39·21-s − 0.337·23-s − 0.912·25-s − 1.07·27-s − 0.523·29-s + 0.506·31-s + 0.296·33-s + 0.562·35-s + 0.706·37-s + 0.204·39-s + 1.01·41-s + 1.34·43-s + 0.135·45-s + 1.06·47-s + 2.61·49-s + 1.16·51-s − 0.624·53-s − 0.119·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.713938682\)
\(L(\frac12)\) \(\approx\) \(1.713938682\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 13T \)
good3 \( 1 - 3.82T + 27T^{2} \)
5 \( 1 + 3.31T + 125T^{2} \)
7 \( 1 + 35.2T + 343T^{2} \)
11 \( 1 - 14.7T + 1.33e3T^{2} \)
17 \( 1 - 111.T + 4.91e3T^{2} \)
19 \( 1 - 6.84T + 6.85e3T^{2} \)
23 \( 1 + 37.2T + 1.21e4T^{2} \)
29 \( 1 + 81.7T + 2.43e4T^{2} \)
31 \( 1 - 87.4T + 2.97e4T^{2} \)
37 \( 1 - 159.T + 5.06e4T^{2} \)
41 \( 1 - 266.T + 6.89e4T^{2} \)
43 \( 1 - 377.T + 7.95e4T^{2} \)
47 \( 1 - 344.T + 1.03e5T^{2} \)
53 \( 1 + 241.T + 1.48e5T^{2} \)
59 \( 1 + 462.T + 2.05e5T^{2} \)
61 \( 1 - 76.9T + 2.26e5T^{2} \)
67 \( 1 - 717.T + 3.00e5T^{2} \)
71 \( 1 - 123.T + 3.57e5T^{2} \)
73 \( 1 - 977.T + 3.89e5T^{2} \)
79 \( 1 - 399.T + 4.93e5T^{2} \)
83 \( 1 + 1.12e3T + 5.71e5T^{2} \)
89 \( 1 - 1.06e3T + 7.04e5T^{2} \)
97 \( 1 - 563.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.494071423249406515149704959140, −9.288959718352240814527474727985, −8.072967719750406782127920449824, −7.41839005505636001334510489505, −6.23254415807738024890309024560, −5.71665373413486153644468119057, −3.93287498576658859422093018544, −3.38778148136175459758569924526, −2.48934439500396542828823265443, −0.67944344128939206431948126866, 0.67944344128939206431948126866, 2.48934439500396542828823265443, 3.38778148136175459758569924526, 3.93287498576658859422093018544, 5.71665373413486153644468119057, 6.23254415807738024890309024560, 7.41839005505636001334510489505, 8.072967719750406782127920449824, 9.288959718352240814527474727985, 9.494071423249406515149704959140

Graph of the $Z$-function along the critical line