L(s) = 1 | − 5-s + 0.121·7-s − 2.87·11-s + 5.22·13-s + 2.22·17-s + 1.22·19-s − 23-s + 25-s − 9.34·29-s − 2.12·31-s − 0.121·35-s + 5.59·37-s − 8.22·41-s + 8·43-s + 10.4·47-s − 6.98·49-s + 3.59·53-s + 2.87·55-s + 0.650·59-s − 7.33·61-s − 5.22·65-s + 5.59·67-s + 13.9·71-s + 12.9·73-s − 0.349·77-s − 3.51·79-s + 11.1·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.0459·7-s − 0.867·11-s + 1.45·13-s + 0.540·17-s + 0.281·19-s − 0.208·23-s + 0.200·25-s − 1.73·29-s − 0.381·31-s − 0.0205·35-s + 0.919·37-s − 1.28·41-s + 1.21·43-s + 1.52·47-s − 0.997·49-s + 0.493·53-s + 0.388·55-s + 0.0846·59-s − 0.939·61-s − 0.648·65-s + 0.683·67-s + 1.65·71-s + 1.51·73-s − 0.0398·77-s − 0.395·79-s + 1.21·83-s + ⋯ |
Λ(s)=(=(8280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.730249888 |
L(21) |
≈ |
1.730249888 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1+T |
good | 7 | 1−0.121T+7T2 |
| 11 | 1+2.87T+11T2 |
| 13 | 1−5.22T+13T2 |
| 17 | 1−2.22T+17T2 |
| 19 | 1−1.22T+19T2 |
| 29 | 1+9.34T+29T2 |
| 31 | 1+2.12T+31T2 |
| 37 | 1−5.59T+37T2 |
| 41 | 1+8.22T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1−10.4T+47T2 |
| 53 | 1−3.59T+53T2 |
| 59 | 1−0.650T+59T2 |
| 61 | 1+7.33T+61T2 |
| 67 | 1−5.59T+67T2 |
| 71 | 1−13.9T+71T2 |
| 73 | 1−12.9T+73T2 |
| 79 | 1+3.51T+79T2 |
| 83 | 1−11.1T+83T2 |
| 89 | 1−0.486T+89T2 |
| 97 | 1−0.635T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.933941265653865905993035050915, −7.22639220921320099555227471987, −6.41010998119142004645101667310, −5.63013345753158074281748672730, −5.19332366885526801019576690191, −4.04440243182723350194702502142, −3.64142121406332749149034107718, −2.73133099074177703330270970874, −1.71872603270270747772551083490, −0.65559402291503074044996035287,
0.65559402291503074044996035287, 1.71872603270270747772551083490, 2.73133099074177703330270970874, 3.64142121406332749149034107718, 4.04440243182723350194702502142, 5.19332366885526801019576690191, 5.63013345753158074281748672730, 6.41010998119142004645101667310, 7.22639220921320099555227471987, 7.933941265653865905993035050915