| L(s) = 1 | + (−1.06 + 0.933i)2-s + (0.257 − 1.98i)4-s + 1.22i·5-s − 3.40i·7-s + (1.57 + 2.34i)8-s + (−1.14 − 1.30i)10-s − 2.21·11-s − 4.82·13-s + (3.18 + 3.62i)14-s + (−3.86 − 1.02i)16-s + 1.01i·17-s + 8.63i·19-s + (2.43 + 0.316i)20-s + (2.35 − 2.07i)22-s + 23-s + ⋯ |
| L(s) = 1 | + (−0.751 + 0.660i)2-s + (0.128 − 0.991i)4-s + 0.549i·5-s − 1.28i·7-s + (0.557 + 0.830i)8-s + (−0.362 − 0.412i)10-s − 0.668·11-s − 1.33·13-s + (0.850 + 0.967i)14-s + (−0.966 − 0.255i)16-s + 0.245i·17-s + 1.98i·19-s + (0.544 + 0.0707i)20-s + (0.502 − 0.441i)22-s + 0.208·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.735 - 0.677i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.211393 + 0.541306i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.211393 + 0.541306i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.06 - 0.933i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 - T \) |
| good | 5 | \( 1 - 1.22iT - 5T^{2} \) |
| 7 | \( 1 + 3.40iT - 7T^{2} \) |
| 11 | \( 1 + 2.21T + 11T^{2} \) |
| 13 | \( 1 + 4.82T + 13T^{2} \) |
| 17 | \( 1 - 1.01iT - 17T^{2} \) |
| 19 | \( 1 - 8.63iT - 19T^{2} \) |
| 29 | \( 1 - 9.68iT - 29T^{2} \) |
| 31 | \( 1 - 3.37iT - 31T^{2} \) |
| 37 | \( 1 - 4.73T + 37T^{2} \) |
| 41 | \( 1 - 3.51iT - 41T^{2} \) |
| 43 | \( 1 + 3.87iT - 43T^{2} \) |
| 47 | \( 1 + 2.64T + 47T^{2} \) |
| 53 | \( 1 - 13.5iT - 53T^{2} \) |
| 59 | \( 1 - 0.774T + 59T^{2} \) |
| 61 | \( 1 + 9.56T + 61T^{2} \) |
| 67 | \( 1 - 8.78iT - 67T^{2} \) |
| 71 | \( 1 + 15.6T + 71T^{2} \) |
| 73 | \( 1 - 10.0T + 73T^{2} \) |
| 79 | \( 1 + 8.25iT - 79T^{2} \) |
| 83 | \( 1 + 2.16T + 83T^{2} \) |
| 89 | \( 1 + 4.80iT - 89T^{2} \) |
| 97 | \( 1 - 12.8T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46932711890677886294401778572, −9.872076714226325263957760544471, −8.772586522560943536018278879520, −7.66026689109076208528474156477, −7.38389761509776466414727780063, −6.47973153914880562600809772070, −5.39996061699711576735746646655, −4.41633546564410314246725772343, −2.99437205571695855210351541060, −1.42570381839805746995489863261,
0.36941585282810674337562493843, 2.31470276681472745696770272810, 2.78249844984343668347069390653, 4.53837589757058442265486428203, 5.23535092141870778706417103317, 6.60140599616383750732503670391, 7.63783254534029244453987903458, 8.368222312693917238953911705346, 9.341197229073572844616286958672, 9.538149815657038200733937944623