| L(s) = 1 | + (1.13 + 0.842i)2-s + (0.579 + 1.91i)4-s − 1.27i·5-s − 0.887i·7-s + (−0.955 + 2.66i)8-s + (1.07 − 1.44i)10-s + 2.82·11-s + 5.21·13-s + (0.748 − 1.00i)14-s + (−3.32 + 2.21i)16-s + 2.72i·17-s − 0.887i·19-s + (2.43 − 0.736i)20-s + (3.21 + 2.38i)22-s − 23-s + ⋯ |
| L(s) = 1 | + (0.803 + 0.595i)2-s + (0.289 + 0.957i)4-s − 0.568i·5-s − 0.335i·7-s + (−0.337 + 0.941i)8-s + (0.338 − 0.456i)10-s + 0.852·11-s + 1.44·13-s + (0.199 − 0.269i)14-s + (−0.832 + 0.554i)16-s + 0.661i·17-s − 0.203i·19-s + (0.544 − 0.164i)20-s + (0.684 + 0.508i)22-s − 0.208·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.614 - 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.614 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.36932 + 1.15832i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.36932 + 1.15832i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.13 - 0.842i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 + T \) |
| good | 5 | \( 1 + 1.27iT - 5T^{2} \) |
| 7 | \( 1 + 0.887iT - 7T^{2} \) |
| 11 | \( 1 - 2.82T + 11T^{2} \) |
| 13 | \( 1 - 5.21T + 13T^{2} \) |
| 17 | \( 1 - 2.72iT - 17T^{2} \) |
| 19 | \( 1 + 0.887iT - 19T^{2} \) |
| 29 | \( 1 - 0.585iT - 29T^{2} \) |
| 31 | \( 1 - 4.22iT - 31T^{2} \) |
| 37 | \( 1 - 5.57T + 37T^{2} \) |
| 41 | \( 1 + 2.40iT - 41T^{2} \) |
| 43 | \( 1 - 6.36iT - 43T^{2} \) |
| 47 | \( 1 + 10.6T + 47T^{2} \) |
| 53 | \( 1 + 9.06iT - 53T^{2} \) |
| 59 | \( 1 + 7.41T + 59T^{2} \) |
| 61 | \( 1 + 0.851T + 61T^{2} \) |
| 67 | \( 1 + 8.19iT - 67T^{2} \) |
| 71 | \( 1 + 7.91T + 71T^{2} \) |
| 73 | \( 1 + 7.25T + 73T^{2} \) |
| 79 | \( 1 + 14.5iT - 79T^{2} \) |
| 83 | \( 1 + 1.45T + 83T^{2} \) |
| 89 | \( 1 - 3.00iT - 89T^{2} \) |
| 97 | \( 1 - 9.45T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53177378839602568766442638382, −9.154058887140851072155248055127, −8.568769954428089092813680977902, −7.74745677671779566604483095177, −6.59667520640096422285781046482, −6.10185806961238123220308828765, −4.94129822917354905007799934252, −4.08820193591867159270367213901, −3.25253865091576536278937424711, −1.47194441284852658314681539387,
1.28053369052907518824860796407, 2.65414269351717063673851599505, 3.60915012450795890228621062789, 4.49306891813830026134034218140, 5.77813585848633804144099652692, 6.33847382328587745131725544027, 7.26115564146905875525658041122, 8.609491177045263475144714356550, 9.415045423537118175917945632270, 10.30048997466344840454330423379