Properties

Label 2-825-1.1-c3-0-73
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $48.6765$
Root an. cond. $6.97686$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·4-s − 2·7-s + 9·9-s − 11·11-s − 24·12-s + 22·13-s + 64·16-s − 72·17-s + 122·19-s − 6·21-s − 72·23-s + 27·27-s + 16·28-s + 96·29-s − 112·31-s − 33·33-s − 72·36-s − 266·37-s + 66·39-s − 96·41-s + 382·43-s + 88·44-s − 360·47-s + 192·48-s − 339·49-s − 216·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.107·7-s + 1/3·9-s − 0.301·11-s − 0.577·12-s + 0.469·13-s + 16-s − 1.02·17-s + 1.47·19-s − 0.0623·21-s − 0.652·23-s + 0.192·27-s + 0.107·28-s + 0.614·29-s − 0.648·31-s − 0.174·33-s − 1/3·36-s − 1.18·37-s + 0.270·39-s − 0.365·41-s + 1.35·43-s + 0.301·44-s − 1.11·47-s + 0.577·48-s − 0.988·49-s − 0.593·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(48.6765\)
Root analytic conductor: \(6.97686\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
11 \( 1 + p T \)
good2 \( 1 + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
13 \( 1 - 22 T + p^{3} T^{2} \)
17 \( 1 + 72 T + p^{3} T^{2} \)
19 \( 1 - 122 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 - 96 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 + 266 T + p^{3} T^{2} \)
41 \( 1 + 96 T + p^{3} T^{2} \)
43 \( 1 - 382 T + p^{3} T^{2} \)
47 \( 1 + 360 T + p^{3} T^{2} \)
53 \( 1 + 6 p T + p^{3} T^{2} \)
59 \( 1 - 660 T + p^{3} T^{2} \)
61 \( 1 + 430 T + p^{3} T^{2} \)
67 \( 1 + 380 T + p^{3} T^{2} \)
71 \( 1 - 168 T + p^{3} T^{2} \)
73 \( 1 + 218 T + p^{3} T^{2} \)
79 \( 1 + 706 T + p^{3} T^{2} \)
83 \( 1 + 1068 T + p^{3} T^{2} \)
89 \( 1 + 6 T + p^{3} T^{2} \)
97 \( 1 + 686 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.363252259449192128624865426005, −8.610521330296451039658275045690, −7.928454194132104779784890868792, −6.94268162317599509189957641743, −5.74437026653176259668032328609, −4.81776315307113769974819199589, −3.87496281931032794610050345834, −2.95865112366885103391089029523, −1.46089361123687494602973421762, 0, 1.46089361123687494602973421762, 2.95865112366885103391089029523, 3.87496281931032794610050345834, 4.81776315307113769974819199589, 5.74437026653176259668032328609, 6.94268162317599509189957641743, 7.928454194132104779784890868792, 8.610521330296451039658275045690, 9.363252259449192128624865426005

Graph of the $Z$-function along the critical line