L(s) = 1 | + 3·3-s − 8·4-s − 2·7-s + 9·9-s − 11·11-s − 24·12-s + 22·13-s + 64·16-s − 72·17-s + 122·19-s − 6·21-s − 72·23-s + 27·27-s + 16·28-s + 96·29-s − 112·31-s − 33·33-s − 72·36-s − 266·37-s + 66·39-s − 96·41-s + 382·43-s + 88·44-s − 360·47-s + 192·48-s − 339·49-s − 216·51-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s − 0.107·7-s + 1/3·9-s − 0.301·11-s − 0.577·12-s + 0.469·13-s + 16-s − 1.02·17-s + 1.47·19-s − 0.0623·21-s − 0.652·23-s + 0.192·27-s + 0.107·28-s + 0.614·29-s − 0.648·31-s − 0.174·33-s − 1/3·36-s − 1.18·37-s + 0.270·39-s − 0.365·41-s + 1.35·43-s + 0.301·44-s − 1.11·47-s + 0.577·48-s − 0.988·49-s − 0.593·51-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(825s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−pT |
| 5 | 1 |
| 11 | 1+pT |
good | 2 | 1+p3T2 |
| 7 | 1+2T+p3T2 |
| 13 | 1−22T+p3T2 |
| 17 | 1+72T+p3T2 |
| 19 | 1−122T+p3T2 |
| 23 | 1+72T+p3T2 |
| 29 | 1−96T+p3T2 |
| 31 | 1+112T+p3T2 |
| 37 | 1+266T+p3T2 |
| 41 | 1+96T+p3T2 |
| 43 | 1−382T+p3T2 |
| 47 | 1+360T+p3T2 |
| 53 | 1+6pT+p3T2 |
| 59 | 1−660T+p3T2 |
| 61 | 1+430T+p3T2 |
| 67 | 1+380T+p3T2 |
| 71 | 1−168T+p3T2 |
| 73 | 1+218T+p3T2 |
| 79 | 1+706T+p3T2 |
| 83 | 1+1068T+p3T2 |
| 89 | 1+6T+p3T2 |
| 97 | 1+686T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.363252259449192128624865426005, −8.610521330296451039658275045690, −7.928454194132104779784890868792, −6.94268162317599509189957641743, −5.74437026653176259668032328609, −4.81776315307113769974819199589, −3.87496281931032794610050345834, −2.95865112366885103391089029523, −1.46089361123687494602973421762, 0,
1.46089361123687494602973421762, 2.95865112366885103391089029523, 3.87496281931032794610050345834, 4.81776315307113769974819199589, 5.74437026653176259668032328609, 6.94268162317599509189957641743, 7.928454194132104779784890868792, 8.610521330296451039658275045690, 9.363252259449192128624865426005