Properties

Label 2-825-1.1-c3-0-70
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $48.6765$
Root an. cond. $6.97686$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.723·2-s + 3·3-s − 7.47·4-s − 2.17·6-s + 1.13·7-s + 11.1·8-s + 9·9-s + 11·11-s − 22.4·12-s − 21.8·13-s − 0.819·14-s + 51.7·16-s + 6.18·17-s − 6.51·18-s − 92.8·19-s + 3.39·21-s − 7.96·22-s − 36.7·23-s + 33.5·24-s + 15.8·26-s + 27·27-s − 8.46·28-s + 71.1·29-s + 186.·31-s − 127.·32-s + 33·33-s − 4.47·34-s + ⋯
L(s)  = 1  − 0.255·2-s + 0.577·3-s − 0.934·4-s − 0.147·6-s + 0.0611·7-s + 0.494·8-s + 0.333·9-s + 0.301·11-s − 0.539·12-s − 0.466·13-s − 0.0156·14-s + 0.807·16-s + 0.0881·17-s − 0.0852·18-s − 1.12·19-s + 0.0353·21-s − 0.0771·22-s − 0.333·23-s + 0.285·24-s + 0.119·26-s + 0.192·27-s − 0.0571·28-s + 0.455·29-s + 1.08·31-s − 0.701·32-s + 0.174·33-s − 0.0225·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(48.6765\)
Root analytic conductor: \(6.97686\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 \)
11 \( 1 - 11T \)
good2 \( 1 + 0.723T + 8T^{2} \)
7 \( 1 - 1.13T + 343T^{2} \)
13 \( 1 + 21.8T + 2.19e3T^{2} \)
17 \( 1 - 6.18T + 4.91e3T^{2} \)
19 \( 1 + 92.8T + 6.85e3T^{2} \)
23 \( 1 + 36.7T + 1.21e4T^{2} \)
29 \( 1 - 71.1T + 2.43e4T^{2} \)
31 \( 1 - 186.T + 2.97e4T^{2} \)
37 \( 1 + 356.T + 5.06e4T^{2} \)
41 \( 1 - 271.T + 6.89e4T^{2} \)
43 \( 1 - 155.T + 7.95e4T^{2} \)
47 \( 1 - 234.T + 1.03e5T^{2} \)
53 \( 1 - 195.T + 1.48e5T^{2} \)
59 \( 1 + 455.T + 2.05e5T^{2} \)
61 \( 1 + 441.T + 2.26e5T^{2} \)
67 \( 1 - 133.T + 3.00e5T^{2} \)
71 \( 1 + 1.04e3T + 3.57e5T^{2} \)
73 \( 1 + 160.T + 3.89e5T^{2} \)
79 \( 1 + 761.T + 4.93e5T^{2} \)
83 \( 1 - 51.7T + 5.71e5T^{2} \)
89 \( 1 + 1.07e3T + 7.04e5T^{2} \)
97 \( 1 + 703.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.303096338694315331886966347972, −8.616664110169027445670224872884, −7.962484579762390112228576164610, −6.99754085167477805901229589265, −5.85866678728864268153075339313, −4.66974320855044842980915030680, −4.03340274172898315513678322146, −2.78583340557904427382802754752, −1.43239054369412809949472506116, 0, 1.43239054369412809949472506116, 2.78583340557904427382802754752, 4.03340274172898315513678322146, 4.66974320855044842980915030680, 5.85866678728864268153075339313, 6.99754085167477805901229589265, 7.962484579762390112228576164610, 8.616664110169027445670224872884, 9.303096338694315331886966347972

Graph of the $Z$-function along the critical line