L(s) = 1 | − 0.723·2-s + 3·3-s − 7.47·4-s − 2.17·6-s + 1.13·7-s + 11.1·8-s + 9·9-s + 11·11-s − 22.4·12-s − 21.8·13-s − 0.819·14-s + 51.7·16-s + 6.18·17-s − 6.51·18-s − 92.8·19-s + 3.39·21-s − 7.96·22-s − 36.7·23-s + 33.5·24-s + 15.8·26-s + 27·27-s − 8.46·28-s + 71.1·29-s + 186.·31-s − 127.·32-s + 33·33-s − 4.47·34-s + ⋯ |
L(s) = 1 | − 0.255·2-s + 0.577·3-s − 0.934·4-s − 0.147·6-s + 0.0611·7-s + 0.494·8-s + 0.333·9-s + 0.301·11-s − 0.539·12-s − 0.466·13-s − 0.0156·14-s + 0.807·16-s + 0.0881·17-s − 0.0852·18-s − 1.12·19-s + 0.0353·21-s − 0.0771·22-s − 0.333·23-s + 0.285·24-s + 0.119·26-s + 0.192·27-s − 0.0571·28-s + 0.455·29-s + 1.08·31-s − 0.701·32-s + 0.174·33-s − 0.0225·34-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(825s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1 |
| 11 | 1−11T |
good | 2 | 1+0.723T+8T2 |
| 7 | 1−1.13T+343T2 |
| 13 | 1+21.8T+2.19e3T2 |
| 17 | 1−6.18T+4.91e3T2 |
| 19 | 1+92.8T+6.85e3T2 |
| 23 | 1+36.7T+1.21e4T2 |
| 29 | 1−71.1T+2.43e4T2 |
| 31 | 1−186.T+2.97e4T2 |
| 37 | 1+356.T+5.06e4T2 |
| 41 | 1−271.T+6.89e4T2 |
| 43 | 1−155.T+7.95e4T2 |
| 47 | 1−234.T+1.03e5T2 |
| 53 | 1−195.T+1.48e5T2 |
| 59 | 1+455.T+2.05e5T2 |
| 61 | 1+441.T+2.26e5T2 |
| 67 | 1−133.T+3.00e5T2 |
| 71 | 1+1.04e3T+3.57e5T2 |
| 73 | 1+160.T+3.89e5T2 |
| 79 | 1+761.T+4.93e5T2 |
| 83 | 1−51.7T+5.71e5T2 |
| 89 | 1+1.07e3T+7.04e5T2 |
| 97 | 1+703.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.303096338694315331886966347972, −8.616664110169027445670224872884, −7.962484579762390112228576164610, −6.99754085167477805901229589265, −5.85866678728864268153075339313, −4.66974320855044842980915030680, −4.03340274172898315513678322146, −2.78583340557904427382802754752, −1.43239054369412809949472506116, 0,
1.43239054369412809949472506116, 2.78583340557904427382802754752, 4.03340274172898315513678322146, 4.66974320855044842980915030680, 5.85866678728864268153075339313, 6.99754085167477805901229589265, 7.962484579762390112228576164610, 8.616664110169027445670224872884, 9.303096338694315331886966347972