Properties

Label 2-825-1.1-c1-0-29
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $6.58765$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48·2-s − 3-s + 0.193·4-s − 1.48·6-s − 1.19·7-s − 2.67·8-s + 9-s + 11-s − 0.193·12-s − 0.806·13-s − 1.76·14-s − 4.35·16-s − 3.76·17-s + 1.48·18-s − 5.35·19-s + 1.19·21-s + 1.48·22-s − 4·23-s + 2.67·24-s − 1.19·26-s − 27-s − 0.231·28-s − 4.31·29-s + 0.962·31-s − 1.09·32-s − 33-s − 5.58·34-s + ⋯
L(s)  = 1  + 1.04·2-s − 0.577·3-s + 0.0969·4-s − 0.604·6-s − 0.451·7-s − 0.945·8-s + 0.333·9-s + 0.301·11-s − 0.0559·12-s − 0.223·13-s − 0.472·14-s − 1.08·16-s − 0.913·17-s + 0.349·18-s − 1.22·19-s + 0.260·21-s + 0.315·22-s − 0.834·23-s + 0.546·24-s − 0.234·26-s − 0.192·27-s − 0.0437·28-s − 0.800·29-s + 0.172·31-s − 0.193·32-s − 0.174·33-s − 0.957·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(6.58765\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good2 \( 1 - 1.48T + 2T^{2} \)
7 \( 1 + 1.19T + 7T^{2} \)
13 \( 1 + 0.806T + 13T^{2} \)
17 \( 1 + 3.76T + 17T^{2} \)
19 \( 1 + 5.35T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 4.31T + 29T^{2} \)
31 \( 1 - 0.962T + 31T^{2} \)
37 \( 1 + 1.61T + 37T^{2} \)
41 \( 1 - 9.08T + 41T^{2} \)
43 \( 1 + 4.41T + 43T^{2} \)
47 \( 1 + 12.3T + 47T^{2} \)
53 \( 1 + 1.42T + 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 + 0.0752T + 61T^{2} \)
67 \( 1 - 2.70T + 67T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 - 9.89T + 83T^{2} \)
89 \( 1 - 16.8T + 89T^{2} \)
97 \( 1 + 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.824727548796061474124841653805, −9.083657907431766356766631054875, −8.068013884955445269719119145717, −6.66540924706850267965456337882, −6.28062773744403945913256246318, −5.24767170607294390761269817532, −4.38568330778879800444946357376, −3.61582496401322644909572348923, −2.22506912740385525617645534196, 0, 2.22506912740385525617645534196, 3.61582496401322644909572348923, 4.38568330778879800444946357376, 5.24767170607294390761269817532, 6.28062773744403945913256246318, 6.66540924706850267965456337882, 8.068013884955445269719119145717, 9.083657907431766356766631054875, 9.824727548796061474124841653805

Graph of the $Z$-function along the critical line