Properties

Label 2-8208-1.1-c1-0-131
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.879·5-s + 4.41·7-s − 1.04·11-s + 0.0418·13-s + 4.75·17-s − 19-s − 6.87·23-s − 4.22·25-s + 3.87·29-s − 7.78·31-s − 3.87·35-s + 1.22·37-s − 12.1·41-s − 2.55·43-s − 10.4·47-s + 12.4·49-s + 2.83·53-s + 0.916·55-s − 6.16·59-s − 5.95·61-s − 0.0368·65-s + 2.59·67-s − 6.71·71-s + 8.19·73-s − 4.59·77-s + 2.40·79-s − 12.1·83-s + ⋯
L(s)  = 1  − 0.393·5-s + 1.66·7-s − 0.314·11-s + 0.0116·13-s + 1.15·17-s − 0.229·19-s − 1.43·23-s − 0.845·25-s + 0.720·29-s − 1.39·31-s − 0.655·35-s + 0.201·37-s − 1.89·41-s − 0.389·43-s − 1.52·47-s + 1.78·49-s + 0.389·53-s + 0.123·55-s − 0.802·59-s − 0.762·61-s − 0.00456·65-s + 0.317·67-s − 0.797·71-s + 0.958·73-s − 0.523·77-s + 0.270·79-s − 1.33·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 0.879T + 5T^{2} \)
7 \( 1 - 4.41T + 7T^{2} \)
11 \( 1 + 1.04T + 11T^{2} \)
13 \( 1 - 0.0418T + 13T^{2} \)
17 \( 1 - 4.75T + 17T^{2} \)
23 \( 1 + 6.87T + 23T^{2} \)
29 \( 1 - 3.87T + 29T^{2} \)
31 \( 1 + 7.78T + 31T^{2} \)
37 \( 1 - 1.22T + 37T^{2} \)
41 \( 1 + 12.1T + 41T^{2} \)
43 \( 1 + 2.55T + 43T^{2} \)
47 \( 1 + 10.4T + 47T^{2} \)
53 \( 1 - 2.83T + 53T^{2} \)
59 \( 1 + 6.16T + 59T^{2} \)
61 \( 1 + 5.95T + 61T^{2} \)
67 \( 1 - 2.59T + 67T^{2} \)
71 \( 1 + 6.71T + 71T^{2} \)
73 \( 1 - 8.19T + 73T^{2} \)
79 \( 1 - 2.40T + 79T^{2} \)
83 \( 1 + 12.1T + 83T^{2} \)
89 \( 1 + 8.80T + 89T^{2} \)
97 \( 1 + 1.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65590844046455785060479626059, −6.94665207063560643961350102771, −5.91530817585651186360466251033, −5.34301247799803253413457950437, −4.67887927870787700515864151990, −3.96807899752016426895071000300, −3.17970216638695217012050163057, −1.97934271108785529578081578217, −1.46171538438406033408741103536, 0, 1.46171538438406033408741103536, 1.97934271108785529578081578217, 3.17970216638695217012050163057, 3.96807899752016426895071000300, 4.67887927870787700515864151990, 5.34301247799803253413457950437, 5.91530817585651186360466251033, 6.94665207063560643961350102771, 7.65590844046455785060479626059

Graph of the $Z$-function along the critical line