Properties

Label 2-8208-1.1-c1-0-128
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·5-s − 0.630·7-s − 1.09·11-s + 2.34·13-s + 3.26·17-s + 19-s − 1.70·23-s − 2.07·25-s − 5.58·29-s − 8.12·31-s − 1.07·35-s + 3.12·37-s − 3.29·41-s − 7.36·43-s − 8.95·47-s − 6.60·49-s + 7.14·53-s − 1.86·55-s − 14.7·59-s − 11.2·61-s + 3.99·65-s + 7.04·67-s + 3.84·71-s − 1.29·73-s + 0.688·77-s + 7.68·79-s + 5.69·83-s + ⋯
L(s)  = 1  + 0.764·5-s − 0.238·7-s − 0.329·11-s + 0.649·13-s + 0.791·17-s + 0.229·19-s − 0.356·23-s − 0.415·25-s − 1.03·29-s − 1.45·31-s − 0.182·35-s + 0.514·37-s − 0.515·41-s − 1.12·43-s − 1.30·47-s − 0.943·49-s + 0.980·53-s − 0.251·55-s − 1.92·59-s − 1.43·61-s + 0.496·65-s + 0.861·67-s + 0.456·71-s − 0.151·73-s + 0.0784·77-s + 0.864·79-s + 0.625·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 1.70T + 5T^{2} \)
7 \( 1 + 0.630T + 7T^{2} \)
11 \( 1 + 1.09T + 11T^{2} \)
13 \( 1 - 2.34T + 13T^{2} \)
17 \( 1 - 3.26T + 17T^{2} \)
23 \( 1 + 1.70T + 23T^{2} \)
29 \( 1 + 5.58T + 29T^{2} \)
31 \( 1 + 8.12T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 + 3.29T + 41T^{2} \)
43 \( 1 + 7.36T + 43T^{2} \)
47 \( 1 + 8.95T + 47T^{2} \)
53 \( 1 - 7.14T + 53T^{2} \)
59 \( 1 + 14.7T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 - 7.04T + 67T^{2} \)
71 \( 1 - 3.84T + 71T^{2} \)
73 \( 1 + 1.29T + 73T^{2} \)
79 \( 1 - 7.68T + 79T^{2} \)
83 \( 1 - 5.69T + 83T^{2} \)
89 \( 1 + 6.66T + 89T^{2} \)
97 \( 1 - 6.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59381969511318517971316197462, −6.65387412102182874386990895870, −6.03460120275776525739652876075, −5.49128305432659667486148087163, −4.80679544151451295447773731458, −3.68029917526854921603989509069, −3.22787296952861829271559697311, −2.06929839612240596659386832195, −1.44299009555910472471794043313, 0, 1.44299009555910472471794043313, 2.06929839612240596659386832195, 3.22787296952861829271559697311, 3.68029917526854921603989509069, 4.80679544151451295447773731458, 5.49128305432659667486148087163, 6.03460120275776525739652876075, 6.65387412102182874386990895870, 7.59381969511318517971316197462

Graph of the $Z$-function along the critical line