Properties

Label 2-8208-1.1-c1-0-123
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.54·5-s − 3.54·7-s + 0.858·11-s − 1.49·13-s + 2·17-s − 19-s − 5.76·23-s + 7.59·25-s − 7.23·29-s + 6.26·31-s − 12.5·35-s + 0.828·37-s + 1.96·41-s − 5.76·43-s − 4.90·47-s + 5.59·49-s + 0.807·53-s + 3.04·55-s − 5.04·59-s + 9.64·61-s − 5.31·65-s − 9.54·67-s − 3.78·71-s − 10.7·73-s − 3.04·77-s + 8.87·79-s − 9.40·83-s + ⋯
L(s)  = 1  + 1.58·5-s − 1.34·7-s + 0.258·11-s − 0.415·13-s + 0.485·17-s − 0.229·19-s − 1.20·23-s + 1.51·25-s − 1.34·29-s + 1.12·31-s − 2.12·35-s + 0.136·37-s + 0.307·41-s − 0.879·43-s − 0.716·47-s + 0.799·49-s + 0.110·53-s + 0.410·55-s − 0.657·59-s + 1.23·61-s − 0.659·65-s − 1.16·67-s − 0.448·71-s − 1.25·73-s − 0.347·77-s + 0.998·79-s − 1.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 3.54T + 5T^{2} \)
7 \( 1 + 3.54T + 7T^{2} \)
11 \( 1 - 0.858T + 11T^{2} \)
13 \( 1 + 1.49T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
23 \( 1 + 5.76T + 23T^{2} \)
29 \( 1 + 7.23T + 29T^{2} \)
31 \( 1 - 6.26T + 31T^{2} \)
37 \( 1 - 0.828T + 37T^{2} \)
41 \( 1 - 1.96T + 41T^{2} \)
43 \( 1 + 5.76T + 43T^{2} \)
47 \( 1 + 4.90T + 47T^{2} \)
53 \( 1 - 0.807T + 53T^{2} \)
59 \( 1 + 5.04T + 59T^{2} \)
61 \( 1 - 9.64T + 61T^{2} \)
67 \( 1 + 9.54T + 67T^{2} \)
71 \( 1 + 3.78T + 71T^{2} \)
73 \( 1 + 10.7T + 73T^{2} \)
79 \( 1 - 8.87T + 79T^{2} \)
83 \( 1 + 9.40T + 83T^{2} \)
89 \( 1 + 7.83T + 89T^{2} \)
97 \( 1 + 3.33T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30182839144409713198686872040, −6.59395607979482772556078782374, −6.05082448609347951366374708652, −5.67070886491340644594611397253, −4.75173401409288168062401431385, −3.78176074959013651633187577073, −2.97395825304730223098958750266, −2.24957255296239727901227632741, −1.40613504192436554115014728728, 0, 1.40613504192436554115014728728, 2.24957255296239727901227632741, 2.97395825304730223098958750266, 3.78176074959013651633187577073, 4.75173401409288168062401431385, 5.67070886491340644594611397253, 6.05082448609347951366374708652, 6.59395607979482772556078782374, 7.30182839144409713198686872040

Graph of the $Z$-function along the critical line