Properties

Label 2-8208-1.1-c1-0-114
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.30·5-s + 1.64·7-s + 0.478·11-s + 2.76·13-s + 1.45·17-s + 19-s − 5.70·23-s − 3.29·25-s − 0.975·29-s + 5.09·31-s − 2.14·35-s − 9.70·37-s + 2.42·41-s − 5.99·43-s − 9.69·47-s − 4.30·49-s − 13.9·53-s − 0.625·55-s − 9.68·59-s + 14.8·61-s − 3.60·65-s + 0.708·67-s + 10.5·71-s + 4.57·73-s + 0.785·77-s + 13.0·79-s − 3.10·83-s + ⋯
L(s)  = 1  − 0.584·5-s + 0.620·7-s + 0.144·11-s + 0.765·13-s + 0.352·17-s + 0.229·19-s − 1.19·23-s − 0.658·25-s − 0.181·29-s + 0.914·31-s − 0.362·35-s − 1.59·37-s + 0.379·41-s − 0.914·43-s − 1.41·47-s − 0.615·49-s − 1.92·53-s − 0.0843·55-s − 1.26·59-s + 1.90·61-s − 0.447·65-s + 0.0865·67-s + 1.24·71-s + 0.535·73-s + 0.0895·77-s + 1.46·79-s − 0.340·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 1.30T + 5T^{2} \)
7 \( 1 - 1.64T + 7T^{2} \)
11 \( 1 - 0.478T + 11T^{2} \)
13 \( 1 - 2.76T + 13T^{2} \)
17 \( 1 - 1.45T + 17T^{2} \)
23 \( 1 + 5.70T + 23T^{2} \)
29 \( 1 + 0.975T + 29T^{2} \)
31 \( 1 - 5.09T + 31T^{2} \)
37 \( 1 + 9.70T + 37T^{2} \)
41 \( 1 - 2.42T + 41T^{2} \)
43 \( 1 + 5.99T + 43T^{2} \)
47 \( 1 + 9.69T + 47T^{2} \)
53 \( 1 + 13.9T + 53T^{2} \)
59 \( 1 + 9.68T + 59T^{2} \)
61 \( 1 - 14.8T + 61T^{2} \)
67 \( 1 - 0.708T + 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 - 4.57T + 73T^{2} \)
79 \( 1 - 13.0T + 79T^{2} \)
83 \( 1 + 3.10T + 83T^{2} \)
89 \( 1 - 4.84T + 89T^{2} \)
97 \( 1 + 15.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72268557998080069648181259832, −6.69390894750952895529573707126, −6.20537855646589918068005933981, −5.27342150964824562636833195297, −4.68690312393325528506854621237, −3.76625632037620699714960863376, −3.34894333007464121977701112242, −2.08026031244702027965478926524, −1.31876459242242034221258203212, 0, 1.31876459242242034221258203212, 2.08026031244702027965478926524, 3.34894333007464121977701112242, 3.76625632037620699714960863376, 4.68690312393325528506854621237, 5.27342150964824562636833195297, 6.20537855646589918068005933981, 6.69390894750952895529573707126, 7.72268557998080069648181259832

Graph of the $Z$-function along the critical line