Properties

Label 2-8208-1.1-c1-0-113
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 2.64·11-s − 5.29·17-s − 19-s + 5.29·23-s − 5·25-s + 7.93·29-s − 3·31-s − 8·37-s + 2.64·41-s + 6·43-s + 13.2·47-s − 3·49-s + 13.2·53-s − 10.5·59-s − 13·61-s + 3·67-s − 5.29·71-s − 11·73-s − 5.29·77-s − 79-s + 2.64·83-s − 13.2·89-s − 16·97-s − 10.5·101-s + 10.5·107-s + 2·109-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.797·11-s − 1.28·17-s − 0.229·19-s + 1.10·23-s − 25-s + 1.47·29-s − 0.538·31-s − 1.31·37-s + 0.413·41-s + 0.914·43-s + 1.92·47-s − 0.428·49-s + 1.81·53-s − 1.37·59-s − 1.66·61-s + 0.366·67-s − 0.627·71-s − 1.28·73-s − 0.603·77-s − 0.112·79-s + 0.290·83-s − 1.40·89-s − 1.62·97-s − 1.05·101-s + 1.02·107-s + 0.191·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 2.64T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 5.29T + 17T^{2} \)
23 \( 1 - 5.29T + 23T^{2} \)
29 \( 1 - 7.93T + 29T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 + 8T + 37T^{2} \)
41 \( 1 - 2.64T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 - 13.2T + 47T^{2} \)
53 \( 1 - 13.2T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 + 13T + 61T^{2} \)
67 \( 1 - 3T + 67T^{2} \)
71 \( 1 + 5.29T + 71T^{2} \)
73 \( 1 + 11T + 73T^{2} \)
79 \( 1 + T + 79T^{2} \)
83 \( 1 - 2.64T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 + 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41893275930779634012895651473, −6.94107150428303233606677347801, −6.00056980025883650870536488212, −5.36774722842709610585634076926, −4.60323850176097394322477579560, −4.10062717373090040920590038846, −2.91601255266804851984608950242, −2.28727431571152410399892603527, −1.30529084212675840866238653414, 0, 1.30529084212675840866238653414, 2.28727431571152410399892603527, 2.91601255266804851984608950242, 4.10062717373090040920590038846, 4.60323850176097394322477579560, 5.36774722842709610585634076926, 6.00056980025883650870536488212, 6.94107150428303233606677347801, 7.41893275930779634012895651473

Graph of the $Z$-function along the critical line