Properties

Label 2-8208-1.1-c1-0-108
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.76·5-s − 3.18·7-s + 0.181·11-s − 3.18·13-s + 7.84·17-s + 19-s − 3.28·23-s − 1.89·25-s + 9.48·29-s − 2.18·31-s − 5.60·35-s − 6.42·37-s + 1.76·41-s − 9.16·43-s − 9·47-s + 3.12·49-s − 13.6·53-s + 0.320·55-s + 8.78·59-s − 0.703·61-s − 5.60·65-s + 6.37·67-s + 3.22·71-s − 6.88·73-s − 0.578·77-s + 0.986·79-s + 10.2·83-s + ⋯
L(s)  = 1  + 0.787·5-s − 1.20·7-s + 0.0548·11-s − 0.882·13-s + 1.90·17-s + 0.229·19-s − 0.684·23-s − 0.379·25-s + 1.76·29-s − 0.391·31-s − 0.947·35-s − 1.05·37-s + 0.275·41-s − 1.39·43-s − 1.31·47-s + 0.446·49-s − 1.87·53-s + 0.0432·55-s + 1.14·59-s − 0.0900·61-s − 0.694·65-s + 0.779·67-s + 0.382·71-s − 0.805·73-s − 0.0659·77-s + 0.110·79-s + 1.12·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 1.76T + 5T^{2} \)
7 \( 1 + 3.18T + 7T^{2} \)
11 \( 1 - 0.181T + 11T^{2} \)
13 \( 1 + 3.18T + 13T^{2} \)
17 \( 1 - 7.84T + 17T^{2} \)
23 \( 1 + 3.28T + 23T^{2} \)
29 \( 1 - 9.48T + 29T^{2} \)
31 \( 1 + 2.18T + 31T^{2} \)
37 \( 1 + 6.42T + 37T^{2} \)
41 \( 1 - 1.76T + 41T^{2} \)
43 \( 1 + 9.16T + 43T^{2} \)
47 \( 1 + 9T + 47T^{2} \)
53 \( 1 + 13.6T + 53T^{2} \)
59 \( 1 - 8.78T + 59T^{2} \)
61 \( 1 + 0.703T + 61T^{2} \)
67 \( 1 - 6.37T + 67T^{2} \)
71 \( 1 - 3.22T + 71T^{2} \)
73 \( 1 + 6.88T + 73T^{2} \)
79 \( 1 - 0.986T + 79T^{2} \)
83 \( 1 - 10.2T + 83T^{2} \)
89 \( 1 - 7.58T + 89T^{2} \)
97 \( 1 - 0.784T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49950381733190731818484506948, −6.52114580519696065430561490931, −6.28539214187917073244216346804, −5.34948365675017299770808761023, −4.89650723493076761782740310491, −3.60854478233548054226515639024, −3.18099908340865732782881926471, −2.27465465774466991957711951952, −1.28635348977715764021152980952, 0, 1.28635348977715764021152980952, 2.27465465774466991957711951952, 3.18099908340865732782881926471, 3.60854478233548054226515639024, 4.89650723493076761782740310491, 5.34948365675017299770808761023, 6.28539214187917073244216346804, 6.52114580519696065430561490931, 7.49950381733190731818484506948

Graph of the $Z$-function along the critical line