Properties

Label 2-8208-1.1-c1-0-106
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.45·5-s + 4.94·7-s − 3.80·11-s + 1.47·13-s − 1.18·17-s + 19-s + 3.96·23-s + 1.01·25-s − 7.11·29-s + 2.13·31-s − 12.1·35-s − 5.76·37-s − 0.757·41-s − 3.20·43-s + 4.90·47-s + 17.4·49-s − 6.58·53-s + 9.32·55-s − 1.65·59-s − 8.87·61-s − 3.61·65-s − 6.98·67-s − 13.3·71-s + 10.3·73-s − 18.8·77-s − 8.33·79-s + 13.7·83-s + ⋯
L(s)  = 1  − 1.09·5-s + 1.86·7-s − 1.14·11-s + 0.408·13-s − 0.286·17-s + 0.229·19-s + 0.826·23-s + 0.203·25-s − 1.32·29-s + 0.382·31-s − 2.05·35-s − 0.948·37-s − 0.118·41-s − 0.488·43-s + 0.715·47-s + 2.49·49-s − 0.904·53-s + 1.25·55-s − 0.215·59-s − 1.13·61-s − 0.447·65-s − 0.852·67-s − 1.58·71-s + 1.21·73-s − 2.14·77-s − 0.937·79-s + 1.51·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 2.45T + 5T^{2} \)
7 \( 1 - 4.94T + 7T^{2} \)
11 \( 1 + 3.80T + 11T^{2} \)
13 \( 1 - 1.47T + 13T^{2} \)
17 \( 1 + 1.18T + 17T^{2} \)
23 \( 1 - 3.96T + 23T^{2} \)
29 \( 1 + 7.11T + 29T^{2} \)
31 \( 1 - 2.13T + 31T^{2} \)
37 \( 1 + 5.76T + 37T^{2} \)
41 \( 1 + 0.757T + 41T^{2} \)
43 \( 1 + 3.20T + 43T^{2} \)
47 \( 1 - 4.90T + 47T^{2} \)
53 \( 1 + 6.58T + 53T^{2} \)
59 \( 1 + 1.65T + 59T^{2} \)
61 \( 1 + 8.87T + 61T^{2} \)
67 \( 1 + 6.98T + 67T^{2} \)
71 \( 1 + 13.3T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 + 8.33T + 79T^{2} \)
83 \( 1 - 13.7T + 83T^{2} \)
89 \( 1 - 8.85T + 89T^{2} \)
97 \( 1 - 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66223849324257383353545758916, −7.11090439917776975627089844362, −5.95298253066078896035138688621, −5.13919138422186520188879737357, −4.75789198405685273410072551772, −3.98735420126844875424662313316, −3.16535532994092519949011852785, −2.13999642405681780276031405529, −1.28217653280187579856990231594, 0, 1.28217653280187579856990231594, 2.13999642405681780276031405529, 3.16535532994092519949011852785, 3.98735420126844875424662313316, 4.75789198405685273410072551772, 5.13919138422186520188879737357, 5.95298253066078896035138688621, 7.11090439917776975627089844362, 7.66223849324257383353545758916

Graph of the $Z$-function along the critical line