Properties

Label 2-8208-1.1-c1-0-105
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.04·5-s + 0.449·7-s + 1.28·11-s + 2·13-s + 2.09·17-s − 19-s − 3.61·23-s − 3.89·25-s − 3.38·29-s − 2.55·31-s − 0.471·35-s − 0.449·37-s + 11.6·41-s − 9.34·43-s − 2.33·47-s − 6.79·49-s + 11.2·53-s − 1.34·55-s − 1.52·59-s + 6.34·61-s − 2.09·65-s − 12.3·67-s − 13.5·71-s + 6.34·73-s + 0.577·77-s − 5·79-s + 4.43·83-s + ⋯
L(s)  = 1  − 0.469·5-s + 0.169·7-s + 0.387·11-s + 0.554·13-s + 0.508·17-s − 0.229·19-s − 0.754·23-s − 0.779·25-s − 0.628·29-s − 0.458·31-s − 0.0797·35-s − 0.0738·37-s + 1.82·41-s − 1.42·43-s − 0.340·47-s − 0.971·49-s + 1.53·53-s − 0.181·55-s − 0.198·59-s + 0.812·61-s − 0.260·65-s − 1.50·67-s − 1.60·71-s + 0.743·73-s + 0.0658·77-s − 0.562·79-s + 0.486·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 1.04T + 5T^{2} \)
7 \( 1 - 0.449T + 7T^{2} \)
11 \( 1 - 1.28T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 2.09T + 17T^{2} \)
23 \( 1 + 3.61T + 23T^{2} \)
29 \( 1 + 3.38T + 29T^{2} \)
31 \( 1 + 2.55T + 31T^{2} \)
37 \( 1 + 0.449T + 37T^{2} \)
41 \( 1 - 11.6T + 41T^{2} \)
43 \( 1 + 9.34T + 43T^{2} \)
47 \( 1 + 2.33T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 + 1.52T + 59T^{2} \)
61 \( 1 - 6.34T + 61T^{2} \)
67 \( 1 + 12.3T + 67T^{2} \)
71 \( 1 + 13.5T + 71T^{2} \)
73 \( 1 - 6.34T + 73T^{2} \)
79 \( 1 + 5T + 79T^{2} \)
83 \( 1 - 4.43T + 83T^{2} \)
89 \( 1 + 5.95T + 89T^{2} \)
97 \( 1 - 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56773199213531091374305591908, −6.83152247420254172125848682020, −6.00492767341049937342780820707, −5.52578065174730684083984905290, −4.48716402351884805994596084288, −3.90777289813260141441467851141, −3.25260955028930628227212417631, −2.14624479007438700459904484442, −1.27694959651934920351804875411, 0, 1.27694959651934920351804875411, 2.14624479007438700459904484442, 3.25260955028930628227212417631, 3.90777289813260141441467851141, 4.48716402351884805994596084288, 5.52578065174730684083984905290, 6.00492767341049937342780820707, 6.83152247420254172125848682020, 7.56773199213531091374305591908

Graph of the $Z$-function along the critical line