Properties

Label 2-8208-1.1-c1-0-104
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73·5-s + 3.46·7-s + 5.46·11-s + 0.267·13-s + 19-s − 7.46·23-s + 8.92·25-s − 7.46·29-s − 7.46·31-s − 12.9·35-s − 2.92·37-s + 5·41-s − 43-s − 6.66·47-s + 4.99·49-s − 2·53-s − 20.3·55-s + 3.92·59-s − 0.535·61-s − 0.999·65-s + 12.9·67-s − 13.4·71-s − 0.928·73-s + 18.9·77-s − 3.73·79-s + 10.3·83-s − 16.8·89-s + ⋯
L(s)  = 1  − 1.66·5-s + 1.30·7-s + 1.64·11-s + 0.0743·13-s + 0.229·19-s − 1.55·23-s + 1.78·25-s − 1.38·29-s − 1.34·31-s − 2.18·35-s − 0.481·37-s + 0.780·41-s − 0.152·43-s − 0.971·47-s + 0.714·49-s − 0.274·53-s − 2.74·55-s + 0.511·59-s − 0.0686·61-s − 0.124·65-s + 1.57·67-s − 1.59·71-s − 0.108·73-s + 2.15·77-s − 0.419·79-s + 1.14·83-s − 1.78·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 3.73T + 5T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 - 0.267T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 + 7.46T + 23T^{2} \)
29 \( 1 + 7.46T + 29T^{2} \)
31 \( 1 + 7.46T + 31T^{2} \)
37 \( 1 + 2.92T + 37T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 + T + 43T^{2} \)
47 \( 1 + 6.66T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 3.92T + 59T^{2} \)
61 \( 1 + 0.535T + 61T^{2} \)
67 \( 1 - 12.9T + 67T^{2} \)
71 \( 1 + 13.4T + 71T^{2} \)
73 \( 1 + 0.928T + 73T^{2} \)
79 \( 1 + 3.73T + 79T^{2} \)
83 \( 1 - 10.3T + 83T^{2} \)
89 \( 1 + 16.8T + 89T^{2} \)
97 \( 1 - 1.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59109428856316679219863144408, −7.00969868785096405011033373952, −6.12841928450477700481523175188, −5.25313403962505451507304695819, −4.43913322235304698008352165747, −3.88537423070610108067820021569, −3.50389188381833146577863243313, −2.02062618112907014712161175196, −1.27069250095171470897952214370, 0, 1.27069250095171470897952214370, 2.02062618112907014712161175196, 3.50389188381833146577863243313, 3.88537423070610108067820021569, 4.43913322235304698008352165747, 5.25313403962505451507304695819, 6.12841928450477700481523175188, 7.00969868785096405011033373952, 7.59109428856316679219863144408

Graph of the $Z$-function along the critical line