Properties

Label 2-8208-1.1-c1-0-103
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.52·5-s − 2.35·7-s + 0.753·11-s − 4.94·13-s + 0.0567·17-s + 19-s + 8.82·23-s − 2.67·25-s + 4.17·29-s − 0.293·31-s − 3.58·35-s − 8.24·37-s − 4.12·41-s + 5.66·43-s − 0.862·47-s − 1.47·49-s − 4.54·53-s + 1.14·55-s + 6.51·59-s − 2.52·61-s − 7.53·65-s + 1.32·67-s + 4.26·71-s − 0.540·73-s − 1.77·77-s + 13.8·79-s − 16.7·83-s + ⋯
L(s)  = 1  + 0.681·5-s − 0.888·7-s + 0.227·11-s − 1.37·13-s + 0.0137·17-s + 0.229·19-s + 1.83·23-s − 0.535·25-s + 0.775·29-s − 0.0527·31-s − 0.605·35-s − 1.35·37-s − 0.643·41-s + 0.863·43-s − 0.125·47-s − 0.210·49-s − 0.623·53-s + 0.154·55-s + 0.848·59-s − 0.322·61-s − 0.934·65-s + 0.161·67-s + 0.506·71-s − 0.0632·73-s − 0.201·77-s + 1.56·79-s − 1.83·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 1.52T + 5T^{2} \)
7 \( 1 + 2.35T + 7T^{2} \)
11 \( 1 - 0.753T + 11T^{2} \)
13 \( 1 + 4.94T + 13T^{2} \)
17 \( 1 - 0.0567T + 17T^{2} \)
23 \( 1 - 8.82T + 23T^{2} \)
29 \( 1 - 4.17T + 29T^{2} \)
31 \( 1 + 0.293T + 31T^{2} \)
37 \( 1 + 8.24T + 37T^{2} \)
41 \( 1 + 4.12T + 41T^{2} \)
43 \( 1 - 5.66T + 43T^{2} \)
47 \( 1 + 0.862T + 47T^{2} \)
53 \( 1 + 4.54T + 53T^{2} \)
59 \( 1 - 6.51T + 59T^{2} \)
61 \( 1 + 2.52T + 61T^{2} \)
67 \( 1 - 1.32T + 67T^{2} \)
71 \( 1 - 4.26T + 71T^{2} \)
73 \( 1 + 0.540T + 73T^{2} \)
79 \( 1 - 13.8T + 79T^{2} \)
83 \( 1 + 16.7T + 83T^{2} \)
89 \( 1 - 4.82T + 89T^{2} \)
97 \( 1 + 1.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24399538458196040626459844642, −6.82876892947601436448373673548, −6.18015135101285267899287654957, −5.26796931571842969878631660280, −4.89193972299045365953481586977, −3.78729002189925693574393372111, −2.98144896633276194063008671576, −2.35836168838504502395018078050, −1.26794760409473292838389370261, 0, 1.26794760409473292838389370261, 2.35836168838504502395018078050, 2.98144896633276194063008671576, 3.78729002189925693574393372111, 4.89193972299045365953481586977, 5.26796931571842969878631660280, 6.18015135101285267899287654957, 6.82876892947601436448373673548, 7.24399538458196040626459844642

Graph of the $Z$-function along the critical line