Properties

Label 2-8208-1.1-c1-0-100
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.29·5-s + 0.183·7-s + 5.49·11-s + 0.551·13-s − 4.19·17-s + 19-s − 1.55·23-s + 0.258·25-s − 6.12·29-s + 0.381·31-s − 0.420·35-s + 9.05·37-s − 2.94·41-s − 2.53·43-s − 11.3·47-s − 6.96·49-s + 11.2·53-s − 12.6·55-s + 5.13·59-s + 6.93·61-s − 1.26·65-s − 7.74·67-s + 13.0·71-s − 9.71·73-s + 1.00·77-s + 10.0·79-s − 11.0·83-s + ⋯
L(s)  = 1  − 1.02·5-s + 0.0692·7-s + 1.65·11-s + 0.153·13-s − 1.01·17-s + 0.229·19-s − 0.324·23-s + 0.0517·25-s − 1.13·29-s + 0.0685·31-s − 0.0710·35-s + 1.48·37-s − 0.460·41-s − 0.386·43-s − 1.65·47-s − 0.995·49-s + 1.54·53-s − 1.69·55-s + 0.668·59-s + 0.887·61-s − 0.156·65-s − 0.945·67-s + 1.54·71-s − 1.13·73-s + 0.114·77-s + 1.12·79-s − 1.20·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 2.29T + 5T^{2} \)
7 \( 1 - 0.183T + 7T^{2} \)
11 \( 1 - 5.49T + 11T^{2} \)
13 \( 1 - 0.551T + 13T^{2} \)
17 \( 1 + 4.19T + 17T^{2} \)
23 \( 1 + 1.55T + 23T^{2} \)
29 \( 1 + 6.12T + 29T^{2} \)
31 \( 1 - 0.381T + 31T^{2} \)
37 \( 1 - 9.05T + 37T^{2} \)
41 \( 1 + 2.94T + 41T^{2} \)
43 \( 1 + 2.53T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 - 5.13T + 59T^{2} \)
61 \( 1 - 6.93T + 61T^{2} \)
67 \( 1 + 7.74T + 67T^{2} \)
71 \( 1 - 13.0T + 71T^{2} \)
73 \( 1 + 9.71T + 73T^{2} \)
79 \( 1 - 10.0T + 79T^{2} \)
83 \( 1 + 11.0T + 83T^{2} \)
89 \( 1 - 3.76T + 89T^{2} \)
97 \( 1 - 4.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45768530195886996108233046126, −6.76236769033173666881260099029, −6.29302276089872811936493260744, −5.34805885242533692614807598943, −4.37913923908325123617572249846, −3.97218701727335815223412442169, −3.33090728163136241189051242226, −2.15577940420614214586889513052, −1.20814932686571511626329824953, 0, 1.20814932686571511626329824953, 2.15577940420614214586889513052, 3.33090728163136241189051242226, 3.97218701727335815223412442169, 4.37913923908325123617572249846, 5.34805885242533692614807598943, 6.29302276089872811936493260744, 6.76236769033173666881260099029, 7.45768530195886996108233046126

Graph of the $Z$-function along the critical line