L(s) = 1 | + (1 − i)2-s − 2i·4-s + (2.12 − 0.707i)5-s + (−2 − 2i)8-s + (2.12 − 2.12i)9-s + (1.41 − 2.82i)10-s + (−1.29 + 0.535i)13-s − 4·16-s + (1.12 + 0.464i)17-s − 4.24i·18-s + (−1.41 − 4.24i)20-s + (3.99 − 3i)25-s + (−0.757 + 1.82i)26-s + (−0.0502 − 0.121i)29-s + (−4 + 4i)32-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·4-s + (0.948 − 0.316i)5-s + (−0.707 − 0.707i)8-s + (0.707 − 0.707i)9-s + (0.447 − 0.894i)10-s + (−0.358 + 0.148i)13-s − 16-s + (0.271 + 0.112i)17-s − 0.999i·18-s + (−0.316 − 0.948i)20-s + (0.799 − 0.600i)25-s + (−0.148 + 0.358i)26-s + (−0.00933 − 0.0225i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.274 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.274 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57732 - 2.09017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57732 - 2.09017i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 5 | \( 1 + (-2.12 + 0.707i)T \) |
| 41 | \( 1 + (5 + 4i)T \) |
good | 3 | \( 1 + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (1.29 - 0.535i)T + (9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 + (-1.12 - 0.464i)T + (12.0 + 12.0i)T^{2} \) |
| 19 | \( 1 + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (0.0502 + 0.121i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 7.07iT - 37T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + (-33.2 - 33.2i)T^{2} \) |
| 53 | \( 1 + (-0.636 - 1.53i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.24 - 4.24i)T - 73iT^{2} \) |
| 79 | \( 1 + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-5.87 - 14.1i)T + (-62.9 + 62.9i)T^{2} \) |
| 97 | \( 1 + (5.46 - 13.1i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00270991406158384242985371272, −9.496207578839313667600436623944, −8.594430516237340950408546382813, −7.06858255461615732545321871199, −6.31479347959714422514852267544, −5.40379897434951262225057729007, −4.54996891411066560441106768571, −3.48731035406610746280091347393, −2.24795517849300834216711997795, −1.13022358953124043980942546664,
1.98465420659321377532702778407, 3.08942416376126026417510023370, 4.39122206370372936587639496592, 5.25845284431046263266932409290, 6.02894126290954125291784266825, 7.01551329532964233072999673548, 7.61044420371063959752251121242, 8.676916614334566996754283119031, 9.637040185242249426742188588770, 10.43185891234634756004760391185