L(s) = 1 | + (−0.309 + 0.951i)2-s + 1.61·3-s + (−0.809 − 0.587i)4-s + (−0.809 − 0.587i)5-s + (−0.500 + 1.53i)6-s + (−0.618 − 1.90i)7-s + (0.809 − 0.587i)8-s + 1.61·9-s + (0.809 − 0.587i)10-s + (−1.30 − 0.951i)12-s + 1.99·14-s + (−1.30 − 0.951i)15-s + (0.309 + 0.951i)16-s + (−0.500 + 1.53i)18-s + (0.309 + 0.951i)20-s + (−1.00 − 3.07i)21-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + 1.61·3-s + (−0.809 − 0.587i)4-s + (−0.809 − 0.587i)5-s + (−0.500 + 1.53i)6-s + (−0.618 − 1.90i)7-s + (0.809 − 0.587i)8-s + 1.61·9-s + (0.809 − 0.587i)10-s + (−1.30 − 0.951i)12-s + 1.99·14-s + (−1.30 − 0.951i)15-s + (0.309 + 0.951i)16-s + (−0.500 + 1.53i)18-s + (0.309 + 0.951i)20-s + (−1.00 − 3.07i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.083442235\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.083442235\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.309 - 0.951i)T \) |
good | 3 | \( 1 - 1.61T + T^{2} \) |
| 7 | \( 1 + (0.618 + 1.90i)T + (-0.809 + 0.587i)T^{2} \) |
| 11 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 47 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.61T + T^{2} \) |
| 89 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08039803424790952589906146721, −9.307944094663901694399844243433, −8.603544865556118154619867719309, −7.72034769269069050064926221517, −7.42885218571597375905986078273, −6.53281417087198642667966061155, −4.79399823559977154380091261867, −4.00785381160780615597766451765, −3.34263618843484580451267197172, −1.16562337321160233449199782908,
2.25509758017297986770634932613, 2.77680952240398615332876386539, 3.52365474074702603368951110001, 4.61802746560762849090724436068, 6.19557549911782811728553112811, 7.48271776207967215299945373255, 8.375750861455061571822683626075, 8.685346305276017232758761057505, 9.532992246088316991938534810972, 10.18194207779806716219968210900