L(s) = 1 | + 1.59·3-s + (−0.309 − 0.951i)5-s + (−3.74 + 2.72i)7-s − 0.452·9-s + (−1.85 + 5.70i)11-s + (−2.33 − 1.69i)13-s + (−0.493 − 1.51i)15-s + (1.55 − 4.79i)17-s + (−6.33 + 4.59i)19-s + (−5.98 + 4.34i)21-s + (3.04 + 2.21i)23-s + (−0.809 + 0.587i)25-s − 5.51·27-s + (−2.33 − 7.19i)29-s + (0.617 − 1.90i)31-s + ⋯ |
L(s) = 1 | + 0.921·3-s + (−0.138 − 0.425i)5-s + (−1.41 + 1.02i)7-s − 0.150·9-s + (−0.558 + 1.71i)11-s + (−0.647 − 0.470i)13-s + (−0.127 − 0.391i)15-s + (0.377 − 1.16i)17-s + (−1.45 + 1.05i)19-s + (−1.30 + 0.948i)21-s + (0.634 + 0.460i)23-s + (−0.161 + 0.117i)25-s − 1.06·27-s + (−0.434 − 1.33i)29-s + (0.110 − 0.341i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.607i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.794 - 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.219338 + 0.647406i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.219338 + 0.647406i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (-1.63 - 6.19i)T \) |
good | 3 | \( 1 - 1.59T + 3T^{2} \) |
| 7 | \( 1 + (3.74 - 2.72i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (1.85 - 5.70i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (2.33 + 1.69i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.55 + 4.79i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (6.33 - 4.59i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-3.04 - 2.21i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (2.33 + 7.19i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.617 + 1.90i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-1.05 - 3.24i)T + (-29.9 + 21.7i)T^{2} \) |
| 43 | \( 1 + (-2.56 - 1.86i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (-1.08 - 0.789i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.44 - 10.6i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.30 - 3.12i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.56 + 1.13i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-1.19 - 3.67i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (-3.79 + 11.6i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 - 14.2T + 73T^{2} \) |
| 79 | \( 1 + 13.0T + 79T^{2} \) |
| 83 | \( 1 + 15.4T + 83T^{2} \) |
| 89 | \( 1 + (10.1 - 7.39i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.03 - 9.32i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04601963921996434919543019562, −9.676957837072556860728694843701, −9.031354362140588183854436534983, −8.027965920123031963833758963150, −7.36782808528064397984907446533, −6.18797376915512431935101038373, −5.26975947201670102050162828671, −4.12055365384704927552286688838, −2.82578060538178861525999863647, −2.30922383306505909861089541740,
0.27097081611025724027963585614, 2.51557659845713040803651665514, 3.33563527387440087851366879287, 3.98453870868560102275611502488, 5.62170612328965550125651324850, 6.62323070211346416631110767489, 7.23237880130361391759914656984, 8.449089250397376413207068768478, 8.836159068709762507445778343263, 9.923672441424313729000334114985