L(s) = 1 | + (−1.20 − 0.732i)2-s + (0.993 − 0.993i)3-s + (0.925 + 1.77i)4-s + (−1.63 − 1.52i)5-s + (−1.93 + 0.473i)6-s + (2.18 + 2.18i)7-s + (0.179 − 2.82i)8-s + 1.02i·9-s + (0.859 + 3.04i)10-s + 2.71i·11-s + (2.68 + 0.841i)12-s + (2.18 + 2.18i)13-s + (−1.04 − 4.24i)14-s + (−3.14 + 0.108i)15-s + (−2.28 + 3.28i)16-s + (−2.30 + 2.30i)17-s + ⋯ |
L(s) = 1 | + (−0.855 − 0.518i)2-s + (0.573 − 0.573i)3-s + (0.462 + 0.886i)4-s + (−0.731 − 0.682i)5-s + (−0.787 + 0.193i)6-s + (0.825 + 0.825i)7-s + (0.0634 − 0.997i)8-s + 0.341i·9-s + (0.271 + 0.962i)10-s + 0.819i·11-s + (0.774 + 0.242i)12-s + (0.605 + 0.605i)13-s + (−0.278 − 1.13i)14-s + (−0.810 + 0.0279i)15-s + (−0.571 + 0.820i)16-s + (−0.558 + 0.558i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.733 - 0.679i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.733 - 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.839214 + 0.329185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.839214 + 0.329185i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.20 + 0.732i)T \) |
| 5 | \( 1 + (1.63 + 1.52i)T \) |
| 41 | \( 1 - T \) |
good | 3 | \( 1 + (-0.993 + 0.993i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.18 - 2.18i)T + 7iT^{2} \) |
| 11 | \( 1 - 2.71iT - 11T^{2} \) |
| 13 | \( 1 + (-2.18 - 2.18i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.30 - 2.30i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.76T + 19T^{2} \) |
| 23 | \( 1 + (6.72 - 6.72i)T - 23iT^{2} \) |
| 29 | \( 1 + 8.06iT - 29T^{2} \) |
| 31 | \( 1 - 6.13iT - 31T^{2} \) |
| 37 | \( 1 + (1.43 - 1.43i)T - 37iT^{2} \) |
| 43 | \( 1 + (-2.56 + 2.56i)T - 43iT^{2} \) |
| 47 | \( 1 + (-4.33 - 4.33i)T + 47iT^{2} \) |
| 53 | \( 1 + (2.53 + 2.53i)T + 53iT^{2} \) |
| 59 | \( 1 - 0.274T + 59T^{2} \) |
| 61 | \( 1 + 2.40T + 61T^{2} \) |
| 67 | \( 1 + (-4.52 - 4.52i)T + 67iT^{2} \) |
| 71 | \( 1 + 3.75iT - 71T^{2} \) |
| 73 | \( 1 + (2.07 + 2.07i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 + (-2.57 + 2.57i)T - 83iT^{2} \) |
| 89 | \( 1 + 12.7iT - 89T^{2} \) |
| 97 | \( 1 + (-2.97 + 2.97i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33702355816337363044209110160, −9.155669037905624941909745127731, −8.574166907366449828967106522073, −8.048140028316189077109128411114, −7.39598461672223054059711686992, −6.19888542342142827183654126611, −4.67882351343109294278712364505, −3.83208174407067222188118575729, −2.15366443628046210856442407264, −1.71421284167166727202236468586,
0.54111121509767129065757272160, 2.44593090497753049600571672560, 3.75991951469996385511222725704, 4.55986766586049887165450654939, 6.09705764673395121296689948330, 6.78957396332233898014574841030, 7.88517942766319088938686983537, 8.358057712820618215093708242213, 9.039300425020631462055432805672, 10.28328033885255695685356141928