Properties

Label 2-82-41.32-c5-0-7
Degree $2$
Conductor $82$
Sign $-0.563 - 0.826i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s + (15.3 − 15.3i)3-s − 16·4-s + 59.4i·5-s + (61.2 + 61.2i)6-s + (−111. + 111. i)7-s − 64i·8-s − 226. i·9-s − 237.·10-s + (13.6 − 13.6i)11-s + (−245. + 245. i)12-s + (−546. + 546. i)13-s + (−446. − 446. i)14-s + (909. + 909. i)15-s + 256·16-s + (475. + 475. i)17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.982 − 0.982i)3-s − 0.5·4-s + 1.06i·5-s + (0.694 + 0.694i)6-s + (−0.861 + 0.861i)7-s − 0.353i·8-s − 0.930i·9-s − 0.751·10-s + (0.0340 − 0.0340i)11-s + (−0.491 + 0.491i)12-s + (−0.896 + 0.896i)13-s + (−0.609 − 0.609i)14-s + (1.04 + 1.04i)15-s + 0.250·16-s + (0.398 + 0.398i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.563 - 0.826i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.563 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $-0.563 - 0.826i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (73, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ -0.563 - 0.826i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.770048 + 1.45656i\)
\(L(\frac12)\) \(\approx\) \(0.770048 + 1.45656i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
41 \( 1 + (8.66e3 + 6.38e3i)T \)
good3 \( 1 + (-15.3 + 15.3i)T - 243iT^{2} \)
5 \( 1 - 59.4iT - 3.12e3T^{2} \)
7 \( 1 + (111. - 111. i)T - 1.68e4iT^{2} \)
11 \( 1 + (-13.6 + 13.6i)T - 1.61e5iT^{2} \)
13 \( 1 + (546. - 546. i)T - 3.71e5iT^{2} \)
17 \( 1 + (-475. - 475. i)T + 1.41e6iT^{2} \)
19 \( 1 + (-1.57e3 - 1.57e3i)T + 2.47e6iT^{2} \)
23 \( 1 + 2.91e3T + 6.43e6T^{2} \)
29 \( 1 + (-101. + 101. i)T - 2.05e7iT^{2} \)
31 \( 1 + 5.76e3T + 2.86e7T^{2} \)
37 \( 1 - 5.26e3T + 6.93e7T^{2} \)
43 \( 1 + 7.33e3iT - 1.47e8T^{2} \)
47 \( 1 + (-2.00e4 - 2.00e4i)T + 2.29e8iT^{2} \)
53 \( 1 + (-1.61e4 + 1.61e4i)T - 4.18e8iT^{2} \)
59 \( 1 + 648.T + 7.14e8T^{2} \)
61 \( 1 + 4.39e4iT - 8.44e8T^{2} \)
67 \( 1 + (-2.52e4 - 2.52e4i)T + 1.35e9iT^{2} \)
71 \( 1 + (3.64e4 - 3.64e4i)T - 1.80e9iT^{2} \)
73 \( 1 + 3.87e4iT - 2.07e9T^{2} \)
79 \( 1 + (1.31e4 - 1.31e4i)T - 3.07e9iT^{2} \)
83 \( 1 + 1.21e4T + 3.93e9T^{2} \)
89 \( 1 + (-7.41e4 + 7.41e4i)T - 5.58e9iT^{2} \)
97 \( 1 + (-2.52e4 - 2.52e4i)T + 8.58e9iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.21229321864059533489819468516, −12.82411386361285162231917005539, −11.96487222942284666799800698987, −10.03865170777829630210850872833, −9.024694500235484464160174579623, −7.74534210421848425030681601626, −6.95059330504879462464363240637, −5.87295698860591482757634781551, −3.43640545088062157879841004662, −2.16800714236755013356642692667, 0.60699639519476208479507409855, 2.87737043909636677348888150370, 4.00148703954988224645404524477, 5.16152838939050386147972808102, 7.56223986376989930623514743480, 8.889653000625923815732933258401, 9.697930957328725161954411390058, 10.33491095143105373353833333507, 12.00434197523062107205545523833, 13.08279780244023634598213838921

Graph of the $Z$-function along the critical line