Properties

Label 2-82-41.18-c5-0-7
Degree $2$
Conductor $82$
Sign $0.866 - 0.498i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 − 3.80i)2-s + 28.4·3-s + (−12.9 + 9.40i)4-s + (−21.6 + 15.7i)5-s + (−35.1 − 108. i)6-s + (−76.2 + 234. i)7-s + (51.7 + 37.6i)8-s + 566.·9-s + (86.6 + 62.9i)10-s + (80.1 + 58.2i)11-s + (−368. + 267. i)12-s + (293. + 903. i)13-s + 986.·14-s + (−616. + 447. i)15-s + (79.1 − 243. i)16-s + (−914. − 664. i)17-s + ⋯
L(s)  = 1  + (−0.218 − 0.672i)2-s + 1.82·3-s + (−0.404 + 0.293i)4-s + (−0.387 + 0.281i)5-s + (−0.398 − 1.22i)6-s + (−0.587 + 1.80i)7-s + (0.286 + 0.207i)8-s + 2.33·9-s + (0.274 + 0.199i)10-s + (0.199 + 0.145i)11-s + (−0.738 + 0.536i)12-s + (0.481 + 1.48i)13-s + 1.34·14-s + (−0.707 + 0.513i)15-s + (0.0772 − 0.237i)16-s + (−0.767 − 0.557i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.498i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.866 - 0.498i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.866 - 0.498i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.866 - 0.498i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.39775 + 0.639970i\)
\(L(\frac12)\) \(\approx\) \(2.39775 + 0.639970i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.23 + 3.80i)T \)
41 \( 1 + (7.23e3 + 7.96e3i)T \)
good3 \( 1 - 28.4T + 243T^{2} \)
5 \( 1 + (21.6 - 15.7i)T + (965. - 2.97e3i)T^{2} \)
7 \( 1 + (76.2 - 234. i)T + (-1.35e4 - 9.87e3i)T^{2} \)
11 \( 1 + (-80.1 - 58.2i)T + (4.97e4 + 1.53e5i)T^{2} \)
13 \( 1 + (-293. - 903. i)T + (-3.00e5 + 2.18e5i)T^{2} \)
17 \( 1 + (914. + 664. i)T + (4.38e5 + 1.35e6i)T^{2} \)
19 \( 1 + (-277. + 855. i)T + (-2.00e6 - 1.45e6i)T^{2} \)
23 \( 1 + (587. + 1.80e3i)T + (-5.20e6 + 3.78e6i)T^{2} \)
29 \( 1 + (-4.77e3 + 3.46e3i)T + (6.33e6 - 1.95e7i)T^{2} \)
31 \( 1 + (-1.55e3 - 1.12e3i)T + (8.84e6 + 2.72e7i)T^{2} \)
37 \( 1 + (-1.09e4 + 7.98e3i)T + (2.14e7 - 6.59e7i)T^{2} \)
43 \( 1 + (-4.20e3 - 1.29e4i)T + (-1.18e8 + 8.64e7i)T^{2} \)
47 \( 1 + (-1.03e3 - 3.19e3i)T + (-1.85e8 + 1.34e8i)T^{2} \)
53 \( 1 + (3.23e3 - 2.35e3i)T + (1.29e8 - 3.97e8i)T^{2} \)
59 \( 1 + (3.06e3 + 9.44e3i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (8.66e3 - 2.66e4i)T + (-6.83e8 - 4.96e8i)T^{2} \)
67 \( 1 + (-5.21e4 + 3.78e4i)T + (4.17e8 - 1.28e9i)T^{2} \)
71 \( 1 + (-2.25e4 - 1.64e4i)T + (5.57e8 + 1.71e9i)T^{2} \)
73 \( 1 - 2.72e4T + 2.07e9T^{2} \)
79 \( 1 + 4.39e4T + 3.07e9T^{2} \)
83 \( 1 + 1.08e4T + 3.93e9T^{2} \)
89 \( 1 + (-9.89e3 + 3.04e4i)T + (-4.51e9 - 3.28e9i)T^{2} \)
97 \( 1 + (5.84e4 - 4.24e4i)T + (2.65e9 - 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47474111248680341864444310013, −12.41982080356958974770899645904, −11.39774336578778037979308378979, −9.518291197261002378311734642930, −9.129141855515447737577253775406, −8.246375677876977530695635752471, −6.71047085253651279623031982529, −4.26858266802959106462466528741, −2.89045517157807109266798519420, −2.11452815720621185655855702411, 0.981454446189770931056584831891, 3.34721981979634796144141748517, 4.24409130984239317844951195205, 6.68105822556469176694070571889, 7.85328583983307578980442626746, 8.329028283319310834598157259220, 9.753866416553286732434259952935, 10.48644723876820507846919840959, 12.88162435352997008573991675531, 13.52256236979496179194977067826

Graph of the $Z$-function along the critical line