Properties

Label 2-82-41.10-c5-0-7
Degree $2$
Conductor $82$
Sign $0.523 - 0.852i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 + 2.35i)2-s − 20.9·3-s + (4.94 + 15.2i)4-s + (−11.1 − 34.3i)5-s + (−67.7 − 49.2i)6-s + (105. − 76.4i)7-s + (−19.7 + 60.8i)8-s + 195.·9-s + (44.6 − 137. i)10-s + (−76.2 + 234. i)11-s + (−103. − 318. i)12-s + (617. + 448. i)13-s + 520.·14-s + (233. + 718. i)15-s + (−207. + 150. i)16-s + (−467. + 1.43e3i)17-s + ⋯
L(s)  = 1  + (0.572 + 0.415i)2-s − 1.34·3-s + (0.154 + 0.475i)4-s + (−0.199 − 0.614i)5-s + (−0.768 − 0.558i)6-s + (0.811 − 0.589i)7-s + (−0.109 + 0.336i)8-s + 0.803·9-s + (0.141 − 0.434i)10-s + (−0.189 + 0.584i)11-s + (−0.207 − 0.638i)12-s + (1.01 + 0.736i)13-s + 0.709·14-s + (0.268 + 0.824i)15-s + (−0.202 + 0.146i)16-s + (−0.391 + 1.20i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.523 - 0.852i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.523 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.523 - 0.852i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.523 - 0.852i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.37642 + 0.769823i\)
\(L(\frac12)\) \(\approx\) \(1.37642 + 0.769823i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 - 2.35i)T \)
41 \( 1 + (-6.71e3 - 8.41e3i)T \)
good3 \( 1 + 20.9T + 243T^{2} \)
5 \( 1 + (11.1 + 34.3i)T + (-2.52e3 + 1.83e3i)T^{2} \)
7 \( 1 + (-105. + 76.4i)T + (5.19e3 - 1.59e4i)T^{2} \)
11 \( 1 + (76.2 - 234. i)T + (-1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (-617. - 448. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (467. - 1.43e3i)T + (-1.14e6 - 8.34e5i)T^{2} \)
19 \( 1 + (-430. + 312. i)T + (7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (-3.67e3 - 2.66e3i)T + (1.98e6 + 6.12e6i)T^{2} \)
29 \( 1 + (63.5 + 195. i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (-145. + 446. i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (3.23e3 + 9.94e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
43 \( 1 + (-6.47e3 - 4.70e3i)T + (4.54e7 + 1.39e8i)T^{2} \)
47 \( 1 + (-5.81e3 - 4.22e3i)T + (7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (3.15e3 + 9.72e3i)T + (-3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (-2.16e4 - 1.57e4i)T + (2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 + (1.62e4 - 1.18e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + (3.30e3 + 1.01e4i)T + (-1.09e9 + 7.93e8i)T^{2} \)
71 \( 1 + (-1.23e4 + 3.79e4i)T + (-1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 + 7.11e4T + 2.07e9T^{2} \)
79 \( 1 - 4.89e4T + 3.07e9T^{2} \)
83 \( 1 - 2.75e3T + 3.93e9T^{2} \)
89 \( 1 + (6.24e4 - 4.53e4i)T + (1.72e9 - 5.31e9i)T^{2} \)
97 \( 1 + (-4.69e4 - 1.44e5i)T + (-6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34790214958760562519112215908, −12.47296081505721996278037107718, −11.36315477610605724372357562502, −10.77697850292376753231251034964, −8.862675679380143660515435195185, −7.46796703101227231113348603574, −6.25431653135834758970524433803, −5.06621472743614090762084421687, −4.17879215632794762251027764463, −1.22482731136351865527798451834, 0.810483251312669797410061116711, 2.96576089067473064489638238178, 4.88313326524166118664865607435, 5.73472374043174192067153725432, 6.93939834224041876421298503544, 8.691509652492937302873793834855, 10.58719540697532952223739994827, 11.12760598399233718105294509831, 11.81643787983194587279591138746, 12.96493597523726571394286449733

Graph of the $Z$-function along the critical line