Properties

Label 2-82-41.10-c5-0-5
Degree $2$
Conductor $82$
Sign $0.451 - 0.892i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.23 − 2.35i)2-s + 3.92·3-s + (4.94 + 15.2i)4-s + (18.6 + 57.3i)5-s + (−12.6 − 9.21i)6-s + (152. − 110. i)7-s + (19.7 − 60.8i)8-s − 227.·9-s + (74.5 − 229. i)10-s + (−192. + 593. i)11-s + (19.3 + 59.6i)12-s + (−159. − 116. i)13-s − 755.·14-s + (73.1 + 225. i)15-s + (−207. + 150. i)16-s + (−471. + 1.45e3i)17-s + ⋯
L(s)  = 1  + (−0.572 − 0.415i)2-s + 0.251·3-s + (0.154 + 0.475i)4-s + (0.333 + 1.02i)5-s + (−0.143 − 0.104i)6-s + (1.17 − 0.855i)7-s + (0.109 − 0.336i)8-s − 0.936·9-s + (0.235 − 0.726i)10-s + (−0.480 + 1.47i)11-s + (0.0388 + 0.119i)12-s + (−0.262 − 0.190i)13-s − 1.02·14-s + (0.0839 + 0.258i)15-s + (−0.202 + 0.146i)16-s + (−0.395 + 1.21i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.451 - 0.892i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.451 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.451 - 0.892i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.451 - 0.892i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.18320 + 0.726990i\)
\(L(\frac12)\) \(\approx\) \(1.18320 + 0.726990i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (3.23 + 2.35i)T \)
41 \( 1 + (7.38e3 + 7.83e3i)T \)
good3 \( 1 - 3.92T + 243T^{2} \)
5 \( 1 + (-18.6 - 57.3i)T + (-2.52e3 + 1.83e3i)T^{2} \)
7 \( 1 + (-152. + 110. i)T + (5.19e3 - 1.59e4i)T^{2} \)
11 \( 1 + (192. - 593. i)T + (-1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (159. + 116. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (471. - 1.45e3i)T + (-1.14e6 - 8.34e5i)T^{2} \)
19 \( 1 + (-1.32e3 + 962. i)T + (7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (-2.82e3 - 2.05e3i)T + (1.98e6 + 6.12e6i)T^{2} \)
29 \( 1 + (-935. - 2.88e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (3.23e3 - 9.95e3i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (-1.34e3 - 4.12e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
43 \( 1 + (-1.62e3 - 1.18e3i)T + (4.54e7 + 1.39e8i)T^{2} \)
47 \( 1 + (-1.83e4 - 1.33e4i)T + (7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (-1.15e3 - 3.56e3i)T + (-3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (3.00e4 + 2.18e4i)T + (2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 + (2.47e4 - 1.79e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + (7.29e3 + 2.24e4i)T + (-1.09e9 + 7.93e8i)T^{2} \)
71 \( 1 + (-2.15e4 + 6.62e4i)T + (-1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 - 2.89e4T + 2.07e9T^{2} \)
79 \( 1 - 1.09e4T + 3.07e9T^{2} \)
83 \( 1 + 1.31e3T + 3.93e9T^{2} \)
89 \( 1 + (-6.82e4 + 4.96e4i)T + (1.72e9 - 5.31e9i)T^{2} \)
97 \( 1 + (-9.08e3 - 2.79e4i)T + (-6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68940183437235566319884503021, −12.27839285781168150728798172060, −10.87673361562740653963572279795, −10.58519345066864473688514794769, −9.137291689586082152509684003090, −7.78252139236622602198165133571, −6.97266277631260618337169919286, −4.93522604986421826468071288612, −3.09197001442100611386398017174, −1.68848598605328620119162604117, 0.69833252486794339421162845431, 2.49648718049880989214203125383, 5.07941369776150263970577361841, 5.77272334950412626200463186196, 7.83440374745664283254539199673, 8.676485803154654670190278840161, 9.272949986453408250775933775780, 11.10220709813644554127957013392, 11.81332772516790808145389892021, 13.42782991907127674704341070224

Graph of the $Z$-function along the critical line