Properties

Label 2-82-1.1-c3-0-9
Degree $2$
Conductor $82$
Sign $-1$
Analytic cond. $4.83815$
Root an. cond. $2.19958$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s − 18·5-s − 8·6-s − 2·7-s + 8·8-s − 11·9-s − 36·10-s − 52·11-s − 16·12-s + 28·13-s − 4·14-s + 72·15-s + 16·16-s + 14·17-s − 22·18-s − 16·19-s − 72·20-s + 8·21-s − 104·22-s − 36·23-s − 32·24-s + 199·25-s + 56·26-s + 152·27-s − 8·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s − 1.60·5-s − 0.544·6-s − 0.107·7-s + 0.353·8-s − 0.407·9-s − 1.13·10-s − 1.42·11-s − 0.384·12-s + 0.597·13-s − 0.0763·14-s + 1.23·15-s + 1/4·16-s + 0.199·17-s − 0.288·18-s − 0.193·19-s − 0.804·20-s + 0.0831·21-s − 1.00·22-s − 0.326·23-s − 0.272·24-s + 1.59·25-s + 0.422·26-s + 1.08·27-s − 0.0539·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $-1$
Analytic conductor: \(4.83815\)
Root analytic conductor: \(2.19958\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
41 \( 1 + p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
5 \( 1 + 18 T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 52 T + p^{3} T^{2} \)
13 \( 1 - 28 T + p^{3} T^{2} \)
17 \( 1 - 14 T + p^{3} T^{2} \)
19 \( 1 + 16 T + p^{3} T^{2} \)
23 \( 1 + 36 T + p^{3} T^{2} \)
29 \( 1 + 160 T + p^{3} T^{2} \)
31 \( 1 - 132 T + p^{3} T^{2} \)
37 \( 1 + 294 T + p^{3} T^{2} \)
43 \( 1 - 356 T + p^{3} T^{2} \)
47 \( 1 - 42 T + p^{3} T^{2} \)
53 \( 1 + 548 T + p^{3} T^{2} \)
59 \( 1 - 252 T + p^{3} T^{2} \)
61 \( 1 + 494 T + p^{3} T^{2} \)
67 \( 1 + 616 T + p^{3} T^{2} \)
71 \( 1 - 738 T + p^{3} T^{2} \)
73 \( 1 + 1010 T + p^{3} T^{2} \)
79 \( 1 + 834 T + p^{3} T^{2} \)
83 \( 1 + 1436 T + p^{3} T^{2} \)
89 \( 1 - 474 T + p^{3} T^{2} \)
97 \( 1 - 1598 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05781731404672694988677726001, −12.14089579751385523204551781364, −11.30542295452777821091554262735, −10.56655197214834909933591659818, −8.383523366578419877750545151696, −7.39436361471170781681857266305, −5.89329925347244055635800467268, −4.65964345912732488363115619409, −3.22804614496871000854302290278, 0, 3.22804614496871000854302290278, 4.65964345912732488363115619409, 5.89329925347244055635800467268, 7.39436361471170781681857266305, 8.383523366578419877750545151696, 10.56655197214834909933591659818, 11.30542295452777821091554262735, 12.14089579751385523204551781364, 13.05781731404672694988677726001

Graph of the $Z$-function along the critical line