Properties

Label 2-82-1.1-c3-0-7
Degree $2$
Conductor $82$
Sign $1$
Analytic cond. $4.83815$
Root an. cond. $2.19958$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 10·3-s + 4·4-s − 6·5-s + 20·6-s − 10·7-s + 8·8-s + 73·9-s − 12·10-s − 54·11-s + 40·12-s − 82·13-s − 20·14-s − 60·15-s + 16·16-s + 42·17-s + 146·18-s + 134·19-s − 24·20-s − 100·21-s − 108·22-s + 48·23-s + 80·24-s − 89·25-s − 164·26-s + 460·27-s − 40·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.92·3-s + 1/2·4-s − 0.536·5-s + 1.36·6-s − 0.539·7-s + 0.353·8-s + 2.70·9-s − 0.379·10-s − 1.48·11-s + 0.962·12-s − 1.74·13-s − 0.381·14-s − 1.03·15-s + 1/4·16-s + 0.599·17-s + 1.91·18-s + 1.61·19-s − 0.268·20-s − 1.03·21-s − 1.04·22-s + 0.435·23-s + 0.680·24-s − 0.711·25-s − 1.23·26-s + 3.27·27-s − 0.269·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $1$
Analytic conductor: \(4.83815\)
Root analytic conductor: \(2.19958\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.290404485\)
\(L(\frac12)\) \(\approx\) \(3.290404485\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
41 \( 1 - p T \)
good3 \( 1 - 10 T + p^{3} T^{2} \)
5 \( 1 + 6 T + p^{3} T^{2} \)
7 \( 1 + 10 T + p^{3} T^{2} \)
11 \( 1 + 54 T + p^{3} T^{2} \)
13 \( 1 + 82 T + p^{3} T^{2} \)
17 \( 1 - 42 T + p^{3} T^{2} \)
19 \( 1 - 134 T + p^{3} T^{2} \)
23 \( 1 - 48 T + p^{3} T^{2} \)
29 \( 1 - 30 T + p^{3} T^{2} \)
31 \( 1 + 136 T + p^{3} T^{2} \)
37 \( 1 - 2 T + p^{3} T^{2} \)
43 \( 1 - 200 T + p^{3} T^{2} \)
47 \( 1 + 30 T + p^{3} T^{2} \)
53 \( 1 - 390 T + p^{3} T^{2} \)
59 \( 1 + 444 T + p^{3} T^{2} \)
61 \( 1 - 38 T + p^{3} T^{2} \)
67 \( 1 + 610 T + p^{3} T^{2} \)
71 \( 1 + 42 T + p^{3} T^{2} \)
73 \( 1 - 110 T + p^{3} T^{2} \)
79 \( 1 - 950 T + p^{3} T^{2} \)
83 \( 1 - 900 T + p^{3} T^{2} \)
89 \( 1 - 138 T + p^{3} T^{2} \)
97 \( 1 - 170 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88925582678155027172121797733, −13.01715734050641946733876906298, −12.16957823763697448076827295603, −10.23165757573874958538882566309, −9.390868976068457134587438022761, −7.70246473570802112591651630335, −7.45517422870250577199208867013, −4.98312086715730887913075033181, −3.42453634987381401930674881353, −2.52865758156178631512401642655, 2.52865758156178631512401642655, 3.42453634987381401930674881353, 4.98312086715730887913075033181, 7.45517422870250577199208867013, 7.70246473570802112591651630335, 9.390868976068457134587438022761, 10.23165757573874958538882566309, 12.16957823763697448076827295603, 13.01715734050641946733876906298, 13.88925582678155027172121797733

Graph of the $Z$-function along the critical line