L(s) = 1 | + (−1.39 − 1.03i)3-s − 2i·5-s − 2.78i·7-s + (0.870 + 2.87i)9-s + 3.50·11-s + 5.74·13-s + (−2.06 + 2.78i)15-s − i·17-s − 5.56i·19-s + (−2.87 + 3.87i)21-s − 6.90·23-s + 25-s + (1.75 − 4.89i)27-s + 5.48i·29-s − 3.50i·31-s + ⋯ |
L(s) = 1 | + (−0.803 − 0.595i)3-s − 0.894i·5-s − 1.05i·7-s + (0.290 + 0.956i)9-s + 1.05·11-s + 1.59·13-s + (−0.532 + 0.718i)15-s − 0.242i·17-s − 1.27i·19-s + (−0.626 + 0.844i)21-s − 1.44·23-s + 0.200·25-s + (0.336 − 0.941i)27-s + 1.01i·29-s − 0.628i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.595 + 0.803i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.595 + 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.532220 - 1.05734i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.532220 - 1.05734i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.39 + 1.03i)T \) |
| 17 | \( 1 + iT \) |
good | 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + 2.78iT - 7T^{2} \) |
| 11 | \( 1 - 3.50T + 11T^{2} \) |
| 13 | \( 1 - 5.74T + 13T^{2} \) |
| 19 | \( 1 + 5.56iT - 19T^{2} \) |
| 23 | \( 1 + 6.90T + 23T^{2} \) |
| 29 | \( 1 - 5.48iT - 29T^{2} \) |
| 31 | \( 1 + 3.50iT - 31T^{2} \) |
| 37 | \( 1 + 9.48T + 37T^{2} \) |
| 41 | \( 1 + 9.48iT - 41T^{2} \) |
| 43 | \( 1 - 7.00iT - 43T^{2} \) |
| 47 | \( 1 + 9.69T + 47T^{2} \) |
| 53 | \( 1 + 2iT - 53T^{2} \) |
| 59 | \( 1 - 5.56T + 59T^{2} \) |
| 61 | \( 1 - 5.48T + 61T^{2} \) |
| 67 | \( 1 - 11.1iT - 67T^{2} \) |
| 71 | \( 1 - 4.93T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 + 11.7iT - 79T^{2} \) |
| 83 | \( 1 - 2.68T + 83T^{2} \) |
| 89 | \( 1 - 13.2iT - 89T^{2} \) |
| 97 | \( 1 + 9.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08336884748023582845113417292, −8.942676242563880124600703853208, −8.298648989046437011668802874931, −7.13061935902118706874922578346, −6.56284307855279596928128548411, −5.56200246949769537348902662556, −4.55111039628679824909607350772, −3.70856134607764352851930437506, −1.62904722832477333854510973877, −0.71817579033110758031650731239,
1.67515416124514251740800634598, 3.38563934610217004218045967455, 4.02014955098730802438258691718, 5.46360449404046756738057323400, 6.23324853202053654982946749233, 6.60529865377650685951639441745, 8.163891476092807786478684320075, 8.905992895592701035579239781235, 9.902171516188693408298214275375, 10.50839665585413847055553702465