Properties

Label 2-816-1.1-c3-0-43
Degree $2$
Conductor $816$
Sign $-1$
Analytic cond. $48.1455$
Root an. cond. $6.93870$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 12·7-s + 9·9-s − 37·11-s + 19·13-s + 15·15-s + 17·17-s − 37·19-s − 36·21-s + 3·23-s − 100·25-s + 27·27-s − 86·29-s + 142·31-s − 111·33-s − 60·35-s − 296·37-s + 57·39-s − 121·41-s − 3·43-s + 45·45-s − 402·47-s − 199·49-s + 51·51-s + 174·53-s − 185·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.647·7-s + 1/3·9-s − 1.01·11-s + 0.405·13-s + 0.258·15-s + 0.242·17-s − 0.446·19-s − 0.374·21-s + 0.0271·23-s − 4/5·25-s + 0.192·27-s − 0.550·29-s + 0.822·31-s − 0.585·33-s − 0.289·35-s − 1.31·37-s + 0.234·39-s − 0.460·41-s − 0.0106·43-s + 0.149·45-s − 1.24·47-s − 0.580·49-s + 0.140·51-s + 0.450·53-s − 0.453·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $-1$
Analytic conductor: \(48.1455\)
Root analytic conductor: \(6.93870\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 816,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
17 \( 1 - p T \)
good5 \( 1 - p T + p^{3} T^{2} \)
7 \( 1 + 12 T + p^{3} T^{2} \)
11 \( 1 + 37 T + p^{3} T^{2} \)
13 \( 1 - 19 T + p^{3} T^{2} \)
19 \( 1 + 37 T + p^{3} T^{2} \)
23 \( 1 - 3 T + p^{3} T^{2} \)
29 \( 1 + 86 T + p^{3} T^{2} \)
31 \( 1 - 142 T + p^{3} T^{2} \)
37 \( 1 + 8 p T + p^{3} T^{2} \)
41 \( 1 + 121 T + p^{3} T^{2} \)
43 \( 1 + 3 T + p^{3} T^{2} \)
47 \( 1 + 402 T + p^{3} T^{2} \)
53 \( 1 - 174 T + p^{3} T^{2} \)
59 \( 1 + 270 T + p^{3} T^{2} \)
61 \( 1 + 520 T + p^{3} T^{2} \)
67 \( 1 - 780 T + p^{3} T^{2} \)
71 \( 1 + 84 T + p^{3} T^{2} \)
73 \( 1 + 302 T + p^{3} T^{2} \)
79 \( 1 + 178 T + p^{3} T^{2} \)
83 \( 1 + 698 T + p^{3} T^{2} \)
89 \( 1 - 1512 T + p^{3} T^{2} \)
97 \( 1 + 500 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527631166889175287803015797819, −8.546713322663855589593264972465, −7.84850381493504990610562111926, −6.81825601939711440099949022409, −5.94664781749912995542196372760, −4.96506671992925821990436689263, −3.70661741571984361827508374767, −2.80364861906883573424046295356, −1.70652967912283787220949947148, 0, 1.70652967912283787220949947148, 2.80364861906883573424046295356, 3.70661741571984361827508374767, 4.96506671992925821990436689263, 5.94664781749912995542196372760, 6.81825601939711440099949022409, 7.84850381493504990610562111926, 8.546713322663855589593264972465, 9.527631166889175287803015797819

Graph of the $Z$-function along the critical line