Properties

Label 2-8112-1.1-c1-0-127
Degree $2$
Conductor $8112$
Sign $-1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.801·5-s − 3.69·7-s + 9-s + 2.85·11-s + 0.801·15-s + 4.44·17-s − 2.26·19-s − 3.69·21-s − 7.78·23-s − 4.35·25-s + 27-s + 0.246·29-s + 0.466·31-s + 2.85·33-s − 2.96·35-s − 6.65·37-s + 8.63·41-s + 9.76·43-s + 0.801·45-s − 11.8·47-s + 6.63·49-s + 4.44·51-s − 8.94·53-s + 2.28·55-s − 2.26·57-s − 0.396·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.358·5-s − 1.39·7-s + 0.333·9-s + 0.859·11-s + 0.207·15-s + 1.07·17-s − 0.520·19-s − 0.805·21-s − 1.62·23-s − 0.871·25-s + 0.192·27-s + 0.0458·29-s + 0.0838·31-s + 0.496·33-s − 0.500·35-s − 1.09·37-s + 1.34·41-s + 1.48·43-s + 0.119·45-s − 1.73·47-s + 0.947·49-s + 0.622·51-s − 1.22·53-s + 0.308·55-s − 0.300·57-s − 0.0515·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 0.801T + 5T^{2} \)
7 \( 1 + 3.69T + 7T^{2} \)
11 \( 1 - 2.85T + 11T^{2} \)
17 \( 1 - 4.44T + 17T^{2} \)
19 \( 1 + 2.26T + 19T^{2} \)
23 \( 1 + 7.78T + 23T^{2} \)
29 \( 1 - 0.246T + 29T^{2} \)
31 \( 1 - 0.466T + 31T^{2} \)
37 \( 1 + 6.65T + 37T^{2} \)
41 \( 1 - 8.63T + 41T^{2} \)
43 \( 1 - 9.76T + 43T^{2} \)
47 \( 1 + 11.8T + 47T^{2} \)
53 \( 1 + 8.94T + 53T^{2} \)
59 \( 1 + 0.396T + 59T^{2} \)
61 \( 1 - 10.5T + 61T^{2} \)
67 \( 1 + 3.30T + 67T^{2} \)
71 \( 1 + 13.3T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 - 9.72T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 7.77T + 89T^{2} \)
97 \( 1 - 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53764303698918253423062789278, −6.70282113612820539352966502732, −6.11388624621262911548689039401, −5.67947527671296806352073129438, −4.40805526970759398381150640910, −3.76997444682107814486918674554, −3.18252479493396628000384013744, −2.28808856056059731250956843147, −1.38623690374588204164760008827, 0, 1.38623690374588204164760008827, 2.28808856056059731250956843147, 3.18252479493396628000384013744, 3.76997444682107814486918674554, 4.40805526970759398381150640910, 5.67947527671296806352073129438, 6.11388624621262911548689039401, 6.70282113612820539352966502732, 7.53764303698918253423062789278

Graph of the $Z$-function along the critical line