Properties

Label 2-8112-1.1-c1-0-125
Degree $2$
Conductor $8112$
Sign $-1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 4.60·7-s + 9-s − 4.60·11-s − 15-s − 5.60·17-s + 0.605·19-s − 4.60·21-s + 4.60·23-s − 4·25-s − 27-s + 3·29-s − 9.21·31-s + 4.60·33-s + 4.60·35-s + 9.60·37-s + 4.39·41-s − 4.60·43-s + 45-s − 8.60·47-s + 14.2·49-s + 5.60·51-s + 3·53-s − 4.60·55-s − 0.605·57-s − 5.21·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.74·7-s + 0.333·9-s − 1.38·11-s − 0.258·15-s − 1.35·17-s + 0.138·19-s − 1.00·21-s + 0.960·23-s − 0.800·25-s − 0.192·27-s + 0.557·29-s − 1.65·31-s + 0.801·33-s + 0.778·35-s + 1.57·37-s + 0.686·41-s − 0.702·43-s + 0.149·45-s − 1.25·47-s + 2.03·49-s + 0.784·51-s + 0.412·53-s − 0.621·55-s − 0.0802·57-s − 0.678·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - T + 5T^{2} \)
7 \( 1 - 4.60T + 7T^{2} \)
11 \( 1 + 4.60T + 11T^{2} \)
17 \( 1 + 5.60T + 17T^{2} \)
19 \( 1 - 0.605T + 19T^{2} \)
23 \( 1 - 4.60T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 + 9.21T + 31T^{2} \)
37 \( 1 - 9.60T + 37T^{2} \)
41 \( 1 - 4.39T + 41T^{2} \)
43 \( 1 + 4.60T + 43T^{2} \)
47 \( 1 + 8.60T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + 5.21T + 59T^{2} \)
61 \( 1 + 0.394T + 61T^{2} \)
67 \( 1 + 3.39T + 67T^{2} \)
71 \( 1 + 16.6T + 71T^{2} \)
73 \( 1 + 7T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 - 9.81T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 - 3.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55326992612644284338513602082, −6.85488902078981957293180013481, −5.84800089670536786755329886231, −5.41383843189906799581102611569, −4.69159011119179330232435529097, −4.30340060248325367982107153647, −2.88937917399538163806151746224, −2.08876253186317585583360738016, −1.37162036043277068462618055738, 0, 1.37162036043277068462618055738, 2.08876253186317585583360738016, 2.88937917399538163806151746224, 4.30340060248325367982107153647, 4.69159011119179330232435529097, 5.41383843189906799581102611569, 5.84800089670536786755329886231, 6.85488902078981957293180013481, 7.55326992612644284338513602082

Graph of the $Z$-function along the critical line