| L(s) = 1 | − 3-s + 3.12·5-s − 1.48·7-s + 9-s − 4.83·11-s − 3.12·15-s + 3.32·17-s − 3.82·19-s + 1.48·21-s + 4.77·23-s + 4.79·25-s − 27-s + 3.70·29-s − 6.48·31-s + 4.83·33-s − 4.66·35-s − 4.68·37-s − 9.72·41-s + 5.75·43-s + 3.12·45-s + 7.73·47-s − 4.78·49-s − 3.32·51-s + 8.29·53-s − 15.1·55-s + 3.82·57-s + 14.4·59-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1.39·5-s − 0.563·7-s + 0.333·9-s − 1.45·11-s − 0.807·15-s + 0.806·17-s − 0.876·19-s + 0.325·21-s + 0.996·23-s + 0.958·25-s − 0.192·27-s + 0.687·29-s − 1.16·31-s + 0.841·33-s − 0.787·35-s − 0.770·37-s − 1.51·41-s + 0.878·43-s + 0.466·45-s + 1.12·47-s − 0.683·49-s − 0.465·51-s + 1.13·53-s − 2.04·55-s + 0.506·57-s + 1.88·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 - 3.12T + 5T^{2} \) |
| 7 | \( 1 + 1.48T + 7T^{2} \) |
| 11 | \( 1 + 4.83T + 11T^{2} \) |
| 17 | \( 1 - 3.32T + 17T^{2} \) |
| 19 | \( 1 + 3.82T + 19T^{2} \) |
| 23 | \( 1 - 4.77T + 23T^{2} \) |
| 29 | \( 1 - 3.70T + 29T^{2} \) |
| 31 | \( 1 + 6.48T + 31T^{2} \) |
| 37 | \( 1 + 4.68T + 37T^{2} \) |
| 41 | \( 1 + 9.72T + 41T^{2} \) |
| 43 | \( 1 - 5.75T + 43T^{2} \) |
| 47 | \( 1 - 7.73T + 47T^{2} \) |
| 53 | \( 1 - 8.29T + 53T^{2} \) |
| 59 | \( 1 - 14.4T + 59T^{2} \) |
| 61 | \( 1 + 7.18T + 61T^{2} \) |
| 67 | \( 1 - 3.81T + 67T^{2} \) |
| 71 | \( 1 + 5.09T + 71T^{2} \) |
| 73 | \( 1 - 15.7T + 73T^{2} \) |
| 79 | \( 1 + 11.1T + 79T^{2} \) |
| 83 | \( 1 + 4.06T + 83T^{2} \) |
| 89 | \( 1 + 16.9T + 89T^{2} \) |
| 97 | \( 1 + 16.9T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.20267354919895567210250963174, −6.79064845869811986728332559742, −5.92418247327261332718780889925, −5.42706505739195062637544318014, −5.05486233775480810502219469950, −3.90802476350842679856075806819, −2.88873865655095432212393697527, −2.27304391120202520575030053021, −1.26890417628420226885271294972, 0,
1.26890417628420226885271294972, 2.27304391120202520575030053021, 2.88873865655095432212393697527, 3.90802476350842679856075806819, 5.05486233775480810502219469950, 5.42706505739195062637544318014, 5.92418247327261332718780889925, 6.79064845869811986728332559742, 7.20267354919895567210250963174