L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.999 + 1.73i)4-s + (3.31 + 3.74i)5-s + (0.704 − 0.406i)7-s − 2.82·8-s + (−2.24 + 6.70i)10-s + (−13.3 + 7.68i)11-s + (−5.10 − 2.94i)13-s + (0.996 + 0.575i)14-s + (−2.00 − 3.46i)16-s − 12.8·17-s + 1.24·19-s + (−9.79 + 1.99i)20-s + (−18.8 − 10.8i)22-s + (2.39 − 4.15i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.662 + 0.748i)5-s + (0.100 − 0.0581i)7-s − 0.353·8-s + (−0.224 + 0.670i)10-s + (−1.21 + 0.698i)11-s + (−0.392 − 0.226i)13-s + (0.0711 + 0.0410i)14-s + (−0.125 − 0.216i)16-s − 0.758·17-s + 0.0654·19-s + (−0.489 + 0.0997i)20-s + (−0.855 − 0.494i)22-s + (0.104 − 0.180i)23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(−0.930+0.366i)Λ(3−s)
Λ(s)=(=(810s/2ΓC(s+1)L(s)(−0.930+0.366i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
−0.930+0.366i
|
Analytic conductor: |
22.0709 |
Root analytic conductor: |
4.69796 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(539,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :1), −0.930+0.366i)
|
Particular Values
L(23) |
≈ |
1.047064132 |
L(21) |
≈ |
1.047064132 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−1.22i)T |
| 3 | 1 |
| 5 | 1+(−3.31−3.74i)T |
good | 7 | 1+(−0.704+0.406i)T+(24.5−42.4i)T2 |
| 11 | 1+(13.3−7.68i)T+(60.5−104.i)T2 |
| 13 | 1+(5.10+2.94i)T+(84.5+146.i)T2 |
| 17 | 1+12.8T+289T2 |
| 19 | 1−1.24T+361T2 |
| 23 | 1+(−2.39+4.15i)T+(−264.5−458.i)T2 |
| 29 | 1+(36.9−21.3i)T+(420.5−728.i)T2 |
| 31 | 1+(2.10−3.64i)T+(−480.5−832.i)T2 |
| 37 | 1+70.3iT−1.36e3T2 |
| 41 | 1+(−6.09−3.52i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(35.5−20.5i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(−39.8−69.1i)T+(−1.10e3+1.91e3i)T2 |
| 53 | 1−63.7T+2.80e3T2 |
| 59 | 1+(31.7+18.3i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−41.4−71.8i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(77.0+44.5i)T+(2.24e3+3.88e3i)T2 |
| 71 | 1−69.6iT−5.04e3T2 |
| 73 | 1+89.6iT−5.32e3T2 |
| 79 | 1+(67.0+116.i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(54.5+94.4i)T+(−3.44e3+5.96e3i)T2 |
| 89 | 1−137.iT−7.92e3T2 |
| 97 | 1+(78.4−45.3i)T+(4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56278028648636027595409259857, −9.644719276300861632386803953870, −8.839374195868927835822493049328, −7.50608927319200846947326510141, −7.27560470720653643265265593444, −6.08073331269603452922736376154, −5.35825582067984182343999032342, −4.39623028454586611680212126169, −3.03548737831584495105297620840, −2.09138761141746423621700220638,
0.28349056199335134225424521840, 1.81074646093997913882376712388, 2.76688406007992074523015923868, 4.10804013910753723116328626251, 5.16157884552744510501618558804, 5.65342936061646373282582786533, 6.83965098024756968272827542006, 8.139633129792236423988145556417, 8.797536169127615290978025921770, 9.765495116943966444907509203409