| L(s) = 1 | + (−0.819 − 0.573i)2-s + (0.342 + 0.939i)4-s + (−2.18 + 0.473i)5-s + (−0.171 − 0.368i)7-s + (0.258 − 0.965i)8-s + (2.06 + 0.865i)10-s + (3.16 + 3.76i)11-s + (−2.75 − 3.93i)13-s + (−0.0706 + 0.400i)14-s + (−0.766 + 0.642i)16-s + (−0.352 − 1.31i)17-s + (−0.763 + 0.440i)19-s + (−1.19 − 1.89i)20-s + (−0.428 − 4.89i)22-s + (−0.893 − 0.416i)23-s + ⋯ |
| L(s) = 1 | + (−0.579 − 0.405i)2-s + (0.171 + 0.469i)4-s + (−0.977 + 0.211i)5-s + (−0.0649 − 0.139i)7-s + (0.0915 − 0.341i)8-s + (0.652 + 0.273i)10-s + (0.952 + 1.13i)11-s + (−0.764 − 1.09i)13-s + (−0.0188 + 0.107i)14-s + (−0.191 + 0.160i)16-s + (−0.0856 − 0.319i)17-s + (−0.175 + 0.101i)19-s + (−0.266 − 0.422i)20-s + (−0.0913 − 1.04i)22-s + (−0.186 − 0.0868i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 + 0.306i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.951 + 0.306i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0427898 - 0.272582i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0427898 - 0.272582i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.819 + 0.573i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.18 - 0.473i)T \) |
| good | 7 | \( 1 + (0.171 + 0.368i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (-3.16 - 3.76i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (2.75 + 3.93i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (0.352 + 1.31i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.763 - 0.440i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.893 + 0.416i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (1.09 + 6.18i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (7.20 - 2.62i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (8.35 - 2.23i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (10.9 + 1.92i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-1.07 + 12.3i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (3.46 - 1.61i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (0.890 + 0.890i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.0286 + 0.0240i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-3.45 - 1.25i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (2.00 - 1.40i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (4.92 + 2.84i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.355 + 0.0951i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (1.82 - 0.320i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-0.186 + 0.266i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (6.26 + 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.287 + 0.0251i)T + (95.5 + 16.8i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04834972621507864936998917633, −9.029349947636566198802999478657, −8.214895041417763993047442772778, −7.25889678275057647581291436655, −6.88933843939986826102277985900, −5.27163696110789394880568999302, −4.15497834711261664620313873414, −3.30678445350844577839213252678, −1.95273504039734495543673228931, −0.16670012091946429622068219933,
1.55386026597330761504303514915, 3.30884599653132839680784367704, 4.30365865002348835532853168160, 5.41750413877388640702474196438, 6.57171255077768527869787797276, 7.17413261014069161216535195980, 8.208450892301406834801406948588, 8.886107926176318071215972465790, 9.461845422739536763766452744076, 10.70765363567702892862854548682