Properties

Label 2-8004-1.1-c1-0-4
Degree $2$
Conductor $8004$
Sign $1$
Analytic cond. $63.9122$
Root an. cond. $7.99451$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2.79·5-s + 0.517·7-s + 9-s − 1.00·11-s − 2.65·13-s + 2.79·15-s − 5.58·17-s − 6.66·19-s − 0.517·21-s − 23-s + 2.82·25-s − 27-s − 29-s − 9.93·31-s + 1.00·33-s − 1.44·35-s − 4.88·37-s + 2.65·39-s + 12.1·41-s + 2.24·43-s − 2.79·45-s − 2.07·47-s − 6.73·49-s + 5.58·51-s − 9.33·53-s + 2.81·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.25·5-s + 0.195·7-s + 0.333·9-s − 0.303·11-s − 0.735·13-s + 0.722·15-s − 1.35·17-s − 1.52·19-s − 0.112·21-s − 0.208·23-s + 0.564·25-s − 0.192·27-s − 0.185·29-s − 1.78·31-s + 0.175·33-s − 0.244·35-s − 0.803·37-s + 0.424·39-s + 1.89·41-s + 0.343·43-s − 0.416·45-s − 0.302·47-s − 0.961·49-s + 0.782·51-s − 1.28·53-s + 0.380·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8004 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8004 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8004\)    =    \(2^{2} \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(63.9122\)
Root analytic conductor: \(7.99451\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8004,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1816180739\)
\(L(\frac12)\) \(\approx\) \(0.1816180739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + 2.79T + 5T^{2} \)
7 \( 1 - 0.517T + 7T^{2} \)
11 \( 1 + 1.00T + 11T^{2} \)
13 \( 1 + 2.65T + 13T^{2} \)
17 \( 1 + 5.58T + 17T^{2} \)
19 \( 1 + 6.66T + 19T^{2} \)
31 \( 1 + 9.93T + 31T^{2} \)
37 \( 1 + 4.88T + 37T^{2} \)
41 \( 1 - 12.1T + 41T^{2} \)
43 \( 1 - 2.24T + 43T^{2} \)
47 \( 1 + 2.07T + 47T^{2} \)
53 \( 1 + 9.33T + 53T^{2} \)
59 \( 1 + 2.47T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 - 10.4T + 67T^{2} \)
71 \( 1 + 3.17T + 71T^{2} \)
73 \( 1 + 10.5T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 4.77T + 83T^{2} \)
89 \( 1 + 17.2T + 89T^{2} \)
97 \( 1 - 0.776T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76020622362263974691185172835, −7.15717245292372553461849465989, −6.58213714940181249015083719938, −5.73051006551836737228233332563, −4.90541794161851321970463979553, −4.27263457598863744708858701665, −3.81107386081952352638550904257, −2.61734111235578297161401614155, −1.78289983487635010034317997918, −0.20707709735649037527933815802, 0.20707709735649037527933815802, 1.78289983487635010034317997918, 2.61734111235578297161401614155, 3.81107386081952352638550904257, 4.27263457598863744708858701665, 4.90541794161851321970463979553, 5.73051006551836737228233332563, 6.58213714940181249015083719938, 7.15717245292372553461849465989, 7.76020622362263974691185172835

Graph of the $Z$-function along the critical line