L(s) = 1 | + 2i·3-s + 6i·7-s + 23·9-s + 60·11-s − 50i·13-s − 30i·17-s − 40·19-s − 12·21-s − 178i·23-s + 100i·27-s − 166·29-s + 20·31-s + 120i·33-s + 10i·37-s + 100·39-s + ⋯ |
L(s) = 1 | + 0.384i·3-s + 0.323i·7-s + 0.851·9-s + 1.64·11-s − 1.06i·13-s − 0.428i·17-s − 0.482·19-s − 0.124·21-s − 1.61i·23-s + 0.712i·27-s − 1.06·29-s + 0.115·31-s + 0.633i·33-s + 0.0444i·37-s + 0.410·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.894+0.447i)Λ(4−s)
Λ(s)=(=(800s/2ΓC(s+3/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
47.2015 |
Root analytic conductor: |
6.87033 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :3/2), 0.894+0.447i)
|
Particular Values
L(2) |
≈ |
2.315827793 |
L(21) |
≈ |
2.315827793 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2iT−27T2 |
| 7 | 1−6iT−343T2 |
| 11 | 1−60T+1.33e3T2 |
| 13 | 1+50iT−2.19e3T2 |
| 17 | 1+30iT−4.91e3T2 |
| 19 | 1+40T+6.85e3T2 |
| 23 | 1+178iT−1.21e4T2 |
| 29 | 1+166T+2.43e4T2 |
| 31 | 1−20T+2.97e4T2 |
| 37 | 1−10iT−5.06e4T2 |
| 41 | 1+250T+6.89e4T2 |
| 43 | 1+142iT−7.95e4T2 |
| 47 | 1−214iT−1.03e5T2 |
| 53 | 1+490iT−1.48e5T2 |
| 59 | 1−800T+2.05e5T2 |
| 61 | 1−250T+2.26e5T2 |
| 67 | 1+774iT−3.00e5T2 |
| 71 | 1−100T+3.57e5T2 |
| 73 | 1−230iT−3.89e5T2 |
| 79 | 1−1.32e3T+4.93e5T2 |
| 83 | 1+982iT−5.71e5T2 |
| 89 | 1+874T+7.04e5T2 |
| 97 | 1+310iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.816259057052212511119592589013, −9.032732472602482014352527687217, −8.263720276516943120000263714428, −7.08377117381034597765050253729, −6.40992542856802199887632623207, −5.28343637804395783537976304326, −4.29122235409380352279644887160, −3.47523689191275757292368106728, −2.05568073741559131502295398844, −0.70975310124047142595551272372,
1.18402841078320556941008993391, 1.92230138412185716536512001364, 3.78337878194168354118339153295, 4.19866277594699220204188359687, 5.63468931620937173438701790792, 6.78135814630263318874160444823, 7.04564683381188809825546020486, 8.213910924648798787863582097056, 9.254236435359113794638843290884, 9.722133654477880552358941816178