Properties

Label 2-800-5.4-c3-0-17
Degree $2$
Conductor $800$
Sign $-0.447 - 0.894i$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5i·3-s + 10i·7-s + 2·9-s + 15·11-s + 8i·13-s + 21i·17-s + 105·19-s − 50·21-s − 10i·23-s + 145i·27-s + 20·29-s + 230·31-s + 75i·33-s + 54i·37-s − 40·39-s + ⋯
L(s)  = 1  + 0.962i·3-s + 0.539i·7-s + 0.0740·9-s + 0.411·11-s + 0.170i·13-s + 0.299i·17-s + 1.26·19-s − 0.519·21-s − 0.0906i·23-s + 1.03i·27-s + 0.128·29-s + 1.33·31-s + 0.395i·33-s + 0.239i·37-s − 0.164·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.130446241\)
\(L(\frac12)\) \(\approx\) \(2.130446241\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 5iT - 27T^{2} \)
7 \( 1 - 10iT - 343T^{2} \)
11 \( 1 - 15T + 1.33e3T^{2} \)
13 \( 1 - 8iT - 2.19e3T^{2} \)
17 \( 1 - 21iT - 4.91e3T^{2} \)
19 \( 1 - 105T + 6.85e3T^{2} \)
23 \( 1 + 10iT - 1.21e4T^{2} \)
29 \( 1 - 20T + 2.43e4T^{2} \)
31 \( 1 - 230T + 2.97e4T^{2} \)
37 \( 1 - 54iT - 5.06e4T^{2} \)
41 \( 1 + 195T + 6.89e4T^{2} \)
43 \( 1 + 300iT - 7.95e4T^{2} \)
47 \( 1 - 480iT - 1.03e5T^{2} \)
53 \( 1 - 322iT - 1.48e5T^{2} \)
59 \( 1 - 560T + 2.05e5T^{2} \)
61 \( 1 + 730T + 2.26e5T^{2} \)
67 \( 1 + 255iT - 3.00e5T^{2} \)
71 \( 1 - 40T + 3.57e5T^{2} \)
73 \( 1 - 317iT - 3.89e5T^{2} \)
79 \( 1 + 830T + 4.93e5T^{2} \)
83 \( 1 - 75iT - 5.71e5T^{2} \)
89 \( 1 - 705T + 7.04e5T^{2} \)
97 \( 1 - 1.43e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05933523694180690769316812377, −9.390462472179069596155106907535, −8.695014365901603831648621809636, −7.63561133962991080667685581651, −6.60857381789066001051997728776, −5.58153553336405977469609779422, −4.71570131924286179387925384088, −3.82731252784844201825549473418, −2.78126844935986425972026293445, −1.26488385555692970705924787355, 0.64613833073178231131757435988, 1.54790423162024687556825623203, 2.88791181688403196196396084694, 4.07163811184688328759868427161, 5.18653088557902217491367584193, 6.33301783298817688197392994370, 7.06974186968484141758342007936, 7.70072005272500346146200503196, 8.588597613853944861855092057133, 9.716079964802622421143196220288

Graph of the $Z$-function along the critical line