L(s) = 1 | + 5i·3-s + 10i·7-s + 2·9-s + 15·11-s + 8i·13-s + 21i·17-s + 105·19-s − 50·21-s − 10i·23-s + 145i·27-s + 20·29-s + 230·31-s + 75i·33-s + 54i·37-s − 40·39-s + ⋯ |
L(s) = 1 | + 0.962i·3-s + 0.539i·7-s + 0.0740·9-s + 0.411·11-s + 0.170i·13-s + 0.299i·17-s + 1.26·19-s − 0.519·21-s − 0.0906i·23-s + 1.03i·27-s + 0.128·29-s + 1.33·31-s + 0.395i·33-s + 0.239i·37-s − 0.164·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(800s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
47.2015 |
Root analytic conductor: |
6.87033 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
2.130446241 |
L(21) |
≈ |
2.130446241 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−5iT−27T2 |
| 7 | 1−10iT−343T2 |
| 11 | 1−15T+1.33e3T2 |
| 13 | 1−8iT−2.19e3T2 |
| 17 | 1−21iT−4.91e3T2 |
| 19 | 1−105T+6.85e3T2 |
| 23 | 1+10iT−1.21e4T2 |
| 29 | 1−20T+2.43e4T2 |
| 31 | 1−230T+2.97e4T2 |
| 37 | 1−54iT−5.06e4T2 |
| 41 | 1+195T+6.89e4T2 |
| 43 | 1+300iT−7.95e4T2 |
| 47 | 1−480iT−1.03e5T2 |
| 53 | 1−322iT−1.48e5T2 |
| 59 | 1−560T+2.05e5T2 |
| 61 | 1+730T+2.26e5T2 |
| 67 | 1+255iT−3.00e5T2 |
| 71 | 1−40T+3.57e5T2 |
| 73 | 1−317iT−3.89e5T2 |
| 79 | 1+830T+4.93e5T2 |
| 83 | 1−75iT−5.71e5T2 |
| 89 | 1−705T+7.04e5T2 |
| 97 | 1−1.43e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05933523694180690769316812377, −9.390462472179069596155106907535, −8.695014365901603831648621809636, −7.63561133962991080667685581651, −6.60857381789066001051997728776, −5.58153553336405977469609779422, −4.71570131924286179387925384088, −3.82731252784844201825549473418, −2.78126844935986425972026293445, −1.26488385555692970705924787355,
0.64613833073178231131757435988, 1.54790423162024687556825623203, 2.88791181688403196196396084694, 4.07163811184688328759868427161, 5.18653088557902217491367584193, 6.33301783298817688197392994370, 7.06974186968484141758342007936, 7.70072005272500346146200503196, 8.588597613853944861855092057133, 9.716079964802622421143196220288