Properties

Label 2-800-5.4-c1-0-14
Degree 22
Conductor 800800
Sign 0.447+0.894i0.447 + 0.894i
Analytic cond. 6.388036.38803
Root an. cond. 2.527452.52745
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23i·3-s − 4.47i·7-s − 2.00·9-s − 2.23·11-s − 4i·13-s − 7i·17-s − 6.70·19-s + 10.0·21-s − 4.47i·23-s + 2.23i·27-s − 4.47·31-s − 5.00i·33-s + 2i·37-s + 8.94·39-s + 5·41-s + ⋯
L(s)  = 1  + 1.29i·3-s − 1.69i·7-s − 0.666·9-s − 0.674·11-s − 1.10i·13-s − 1.69i·17-s − 1.53·19-s + 2.18·21-s − 0.932i·23-s + 0.430i·27-s − 0.803·31-s − 0.870i·33-s + 0.328i·37-s + 1.43·39-s + 0.780·41-s + ⋯

Functional equation

Λ(s)=(800s/2ΓC(s)L(s)=((0.447+0.894i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(800s/2ΓC(s+1/2)L(s)=((0.447+0.894i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 800800    =    25522^{5} \cdot 5^{2}
Sign: 0.447+0.894i0.447 + 0.894i
Analytic conductor: 6.388036.38803
Root analytic conductor: 2.527452.52745
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ800(449,)\chi_{800} (449, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 800, ( :1/2), 0.447+0.894i)(2,\ 800,\ (\ :1/2),\ 0.447 + 0.894i)

Particular Values

L(1)L(1) \approx 0.8916940.551097i0.891694 - 0.551097i
L(12)L(\frac12) \approx 0.8916940.551097i0.891694 - 0.551097i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 12.23iT3T2 1 - 2.23iT - 3T^{2}
7 1+4.47iT7T2 1 + 4.47iT - 7T^{2}
11 1+2.23T+11T2 1 + 2.23T + 11T^{2}
13 1+4iT13T2 1 + 4iT - 13T^{2}
17 1+7iT17T2 1 + 7iT - 17T^{2}
19 1+6.70T+19T2 1 + 6.70T + 19T^{2}
23 1+4.47iT23T2 1 + 4.47iT - 23T^{2}
29 1+29T2 1 + 29T^{2}
31 1+4.47T+31T2 1 + 4.47T + 31T^{2}
37 12iT37T2 1 - 2iT - 37T^{2}
41 15T+41T2 1 - 5T + 41T^{2}
43 143T2 1 - 43T^{2}
47 18.94iT47T2 1 - 8.94iT - 47T^{2}
53 1+6iT53T2 1 + 6iT - 53T^{2}
59 18.94T+59T2 1 - 8.94T + 59T^{2}
61 110T+61T2 1 - 10T + 61T^{2}
67 12.23iT67T2 1 - 2.23iT - 67T^{2}
71 18.94T+71T2 1 - 8.94T + 71T^{2}
73 19iT73T2 1 - 9iT - 73T^{2}
79 1+4.47T+79T2 1 + 4.47T + 79T^{2}
83 1+11.1iT83T2 1 + 11.1iT - 83T^{2}
89 15T+89T2 1 - 5T + 89T^{2}
97 12iT97T2 1 - 2iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.22126893401987219877113284521, −9.584141881149224723783467051629, −8.469176036014149012714456319255, −7.56745687713949154328048309048, −6.74252003028005576873378520665, −5.34854868382741696583165440957, −4.57272530213011923377055113525, −3.85967026668060147693194313413, −2.75877629512651577296731893493, −0.50057434318881295746733251681, 1.85793490824930887371118267577, 2.30465757592091406978958476340, 3.95401355288388500054661419207, 5.41618953321174318252451866652, 6.13917781042818966015678213445, 6.84081540251077787635520578612, 7.971796019656869401796858542685, 8.552610306597801414122356193401, 9.305065441663806047337678323255, 10.53520457198126335357522580774

Graph of the ZZ-function along the critical line