L(s) = 1 | − 2.23i·3-s + 4.47i·7-s − 2.00·9-s + 2.23·11-s − 4i·13-s − 7i·17-s + 6.70·19-s + 10.0·21-s + 4.47i·23-s − 2.23i·27-s + 4.47·31-s − 5.00i·33-s + 2i·37-s − 8.94·39-s + 5·41-s + ⋯ |
L(s) = 1 | − 1.29i·3-s + 1.69i·7-s − 0.666·9-s + 0.674·11-s − 1.10i·13-s − 1.69i·17-s + 1.53·19-s + 2.18·21-s + 0.932i·23-s − 0.430i·27-s + 0.803·31-s − 0.870i·33-s + 0.328i·37-s − 1.43·39-s + 0.780·41-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(800s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
6.38803 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.39974−0.865087i |
L(21) |
≈ |
1.39974−0.865087i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.23iT−3T2 |
| 7 | 1−4.47iT−7T2 |
| 11 | 1−2.23T+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1+7iT−17T2 |
| 19 | 1−6.70T+19T2 |
| 23 | 1−4.47iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−4.47T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1−5T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+8.94iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+8.94T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+2.23iT−67T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1−9iT−73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1−5T+89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.839803862765569531545634382689, −9.240965149016500304891626780701, −8.272208392090129247198265658576, −7.53113146570887509660281653628, −6.71644854216888003802266110682, −5.70754864344051235542333078989, −5.13483204895572045308980607817, −3.19190200246757812188398439821, −2.37203888630317906529697764637, −1.01332156552798810380254807772,
1.32094182663328476614322895001, 3.35700141286033908289106089576, 4.21308895363582647916284479630, 4.53474837684645232812174177162, 6.03123191644873442223989771963, 6.95284185642370767670513200014, 7.85996354933156287370130199078, 9.009461987044900305652601609316, 9.682115219200449726619064213667, 10.43617957435955947721893977917