Properties

Label 2-800-5.4-c1-0-10
Degree $2$
Conductor $800$
Sign $0.447 + 0.894i$
Analytic cond. $6.38803$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23i·3-s + 4.47i·7-s − 2.00·9-s + 2.23·11-s − 4i·13-s − 7i·17-s + 6.70·19-s + 10.0·21-s + 4.47i·23-s − 2.23i·27-s + 4.47·31-s − 5.00i·33-s + 2i·37-s − 8.94·39-s + 5·41-s + ⋯
L(s)  = 1  − 1.29i·3-s + 1.69i·7-s − 0.666·9-s + 0.674·11-s − 1.10i·13-s − 1.69i·17-s + 1.53·19-s + 2.18·21-s + 0.932i·23-s − 0.430i·27-s + 0.803·31-s − 0.870i·33-s + 0.328i·37-s − 1.43·39-s + 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(6.38803\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.39974 - 0.865087i\)
\(L(\frac12)\) \(\approx\) \(1.39974 - 0.865087i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.23iT - 3T^{2} \)
7 \( 1 - 4.47iT - 7T^{2} \)
11 \( 1 - 2.23T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + 7iT - 17T^{2} \)
19 \( 1 - 6.70T + 19T^{2} \)
23 \( 1 - 4.47iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 4.47T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 8.94iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 + 8.94T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 2.23iT - 67T^{2} \)
71 \( 1 + 8.94T + 71T^{2} \)
73 \( 1 - 9iT - 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 - 11.1iT - 83T^{2} \)
89 \( 1 - 5T + 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.839803862765569531545634382689, −9.240965149016500304891626780701, −8.272208392090129247198265658576, −7.53113146570887509660281653628, −6.71644854216888003802266110682, −5.70754864344051235542333078989, −5.13483204895572045308980607817, −3.19190200246757812188398439821, −2.37203888630317906529697764637, −1.01332156552798810380254807772, 1.32094182663328476614322895001, 3.35700141286033908289106089576, 4.21308895363582647916284479630, 4.53474837684645232812174177162, 6.03123191644873442223989771963, 6.95284185642370767670513200014, 7.85996354933156287370130199078, 9.009461987044900305652601609316, 9.682115219200449726619064213667, 10.43617957435955947721893977917

Graph of the $Z$-function along the critical line