Properties

Label 2-800-20.3-c1-0-3
Degree $2$
Conductor $800$
Sign $-0.525 - 0.850i$
Analytic cond. $6.38803$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)3-s + (3 + 3i)7-s + i·9-s + 2i·11-s + (−3 − 3i)13-s + (−1 + i)17-s + 4·19-s − 6·21-s + (1 − i)23-s + (−4 − 4i)27-s + 10i·31-s + (−2 − 2i)33-s + (1 − i)37-s + 6·39-s − 10·41-s + ⋯
L(s)  = 1  + (−0.577 + 0.577i)3-s + (1.13 + 1.13i)7-s + 0.333i·9-s + 0.603i·11-s + (−0.832 − 0.832i)13-s + (−0.242 + 0.242i)17-s + 0.917·19-s − 1.30·21-s + (0.208 − 0.208i)23-s + (−0.769 − 0.769i)27-s + 1.79i·31-s + (−0.348 − 0.348i)33-s + (0.164 − 0.164i)37-s + 0.960·39-s − 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.525 - 0.850i$
Analytic conductor: \(6.38803\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (543, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :1/2),\ -0.525 - 0.850i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.573689 + 1.02897i\)
\(L(\frac12)\) \(\approx\) \(0.573689 + 1.02897i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (1 - i)T - 3iT^{2} \)
7 \( 1 + (-3 - 3i)T + 7iT^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 + (3 + 3i)T + 13iT^{2} \)
17 \( 1 + (1 - i)T - 17iT^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + (-1 + i)T - 23iT^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 10iT - 31T^{2} \)
37 \( 1 + (-1 + i)T - 37iT^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 + (5 - 5i)T - 43iT^{2} \)
47 \( 1 + (-3 - 3i)T + 47iT^{2} \)
53 \( 1 + (-5 - 5i)T + 53iT^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + (-1 - i)T + 67iT^{2} \)
71 \( 1 - 2iT - 71T^{2} \)
73 \( 1 + (1 + i)T + 73iT^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + (5 - 5i)T - 83iT^{2} \)
89 \( 1 + 16iT - 89T^{2} \)
97 \( 1 + (-3 + 3i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53801898130760231602550792017, −9.881633541073524618857510399796, −8.845966807037717208827539248878, −8.055300510133531601149933734628, −7.20776009761738679295576243310, −5.84321312207294119439341714655, −5.04279350927061140336413948223, −4.70724086947760161543118487461, −2.98583320373619828613211231407, −1.78704947084357478927538519404, 0.64506924347125637965437535748, 1.86629275310895654054021106238, 3.58560007532189503648850603494, 4.63355241801052051179115717180, 5.51986834619945442717582828569, 6.68522468942190639094060403261, 7.29577776853698128231862495224, 8.043369381561794008056577988471, 9.177523187138729099815204687783, 10.04601612046077669039541069461

Graph of the $Z$-function along the critical line