L(s) = 1 | + (−1 + i)3-s + (3 + 3i)7-s + i·9-s + 2i·11-s + (−3 − 3i)13-s + (−1 + i)17-s + 4·19-s − 6·21-s + (1 − i)23-s + (−4 − 4i)27-s + 10i·31-s + (−2 − 2i)33-s + (1 − i)37-s + 6·39-s − 10·41-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.577i)3-s + (1.13 + 1.13i)7-s + 0.333i·9-s + 0.603i·11-s + (−0.832 − 0.832i)13-s + (−0.242 + 0.242i)17-s + 0.917·19-s − 1.30·21-s + (0.208 − 0.208i)23-s + (−0.769 − 0.769i)27-s + 1.79i·31-s + (−0.348 − 0.348i)33-s + (0.164 − 0.164i)37-s + 0.960·39-s − 1.56·41-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.525−0.850i)Λ(2−s)
Λ(s)=(=(800s/2ΓC(s+1/2)L(s)(−0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.525−0.850i
|
Analytic conductor: |
6.38803 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(543,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :1/2), −0.525−0.850i)
|
Particular Values
L(1) |
≈ |
0.573689+1.02897i |
L(21) |
≈ |
0.573689+1.02897i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1−i)T−3iT2 |
| 7 | 1+(−3−3i)T+7iT2 |
| 11 | 1−2iT−11T2 |
| 13 | 1+(3+3i)T+13iT2 |
| 17 | 1+(1−i)T−17iT2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(−1+i)T−23iT2 |
| 29 | 1−29T2 |
| 31 | 1−10iT−31T2 |
| 37 | 1+(−1+i)T−37iT2 |
| 41 | 1+10T+41T2 |
| 43 | 1+(5−5i)T−43iT2 |
| 47 | 1+(−3−3i)T+47iT2 |
| 53 | 1+(−5−5i)T+53iT2 |
| 59 | 1+12T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+(−1−i)T+67iT2 |
| 71 | 1−2iT−71T2 |
| 73 | 1+(1+i)T+73iT2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(5−5i)T−83iT2 |
| 89 | 1+16iT−89T2 |
| 97 | 1+(−3+3i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53801898130760231602550792017, −9.881633541073524618857510399796, −8.845966807037717208827539248878, −8.055300510133531601149933734628, −7.20776009761738679295576243310, −5.84321312207294119439341714655, −5.04279350927061140336413948223, −4.70724086947760161543118487461, −2.98583320373619828613211231407, −1.78704947084357478927538519404,
0.64506924347125637965437535748, 1.86629275310895654054021106238, 3.58560007532189503648850603494, 4.63355241801052051179115717180, 5.51986834619945442717582828569, 6.68522468942190639094060403261, 7.29577776853698128231862495224, 8.043369381561794008056577988471, 9.177523187138729099815204687783, 10.04601612046077669039541069461