L(s) = 1 | − 2·3-s + 6·7-s − 23·9-s − 60·11-s − 50·13-s + 30·17-s − 40·19-s − 12·21-s + 178·23-s + 100·27-s + 166·29-s − 20·31-s + 120·33-s − 10·37-s + 100·39-s − 250·41-s + 142·43-s + 214·47-s − 307·49-s − 60·51-s − 490·53-s + 80·57-s + 800·59-s + 250·61-s − 138·63-s − 774·67-s − 356·69-s + ⋯ |
L(s) = 1 | − 0.384·3-s + 0.323·7-s − 0.851·9-s − 1.64·11-s − 1.06·13-s + 0.428·17-s − 0.482·19-s − 0.124·21-s + 1.61·23-s + 0.712·27-s + 1.06·29-s − 0.115·31-s + 0.633·33-s − 0.0444·37-s + 0.410·39-s − 0.952·41-s + 0.503·43-s + 0.664·47-s − 0.895·49-s − 0.164·51-s − 1.26·53-s + 0.185·57-s + 1.76·59-s + 0.524·61-s − 0.275·63-s − 1.41·67-s − 0.621·69-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(800s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.091691691 |
L(21) |
≈ |
1.091691691 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2T+p3T2 |
| 7 | 1−6T+p3T2 |
| 11 | 1+60T+p3T2 |
| 13 | 1+50T+p3T2 |
| 17 | 1−30T+p3T2 |
| 19 | 1+40T+p3T2 |
| 23 | 1−178T+p3T2 |
| 29 | 1−166T+p3T2 |
| 31 | 1+20T+p3T2 |
| 37 | 1+10T+p3T2 |
| 41 | 1+250T+p3T2 |
| 43 | 1−142T+p3T2 |
| 47 | 1−214T+p3T2 |
| 53 | 1+490T+p3T2 |
| 59 | 1−800T+p3T2 |
| 61 | 1−250T+p3T2 |
| 67 | 1+774T+p3T2 |
| 71 | 1+100T+p3T2 |
| 73 | 1−230T+p3T2 |
| 79 | 1−1320T+p3T2 |
| 83 | 1−982T+p3T2 |
| 89 | 1−874T+p3T2 |
| 97 | 1−310T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08421165210963073679623468747, −8.950415919407380678132044503976, −8.123621457200789690700512275096, −7.38136997373497635068579341322, −6.32378023986708973375165579652, −5.14530881383801815440747322818, −4.92749321527704198485452966509, −3.15142490379693847056066890327, −2.33789161253966981763205654397, −0.56866515580141363377599688471,
0.56866515580141363377599688471, 2.33789161253966981763205654397, 3.15142490379693847056066890327, 4.92749321527704198485452966509, 5.14530881383801815440747322818, 6.32378023986708973375165579652, 7.38136997373497635068579341322, 8.123621457200789690700512275096, 8.950415919407380678132044503976, 10.08421165210963073679623468747