Properties

Label 2-800-1.1-c3-0-19
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.76·3-s − 15.5·7-s − 4.30·9-s − 74.3·21-s + 207.·23-s − 149.·27-s + 306·29-s + 460.·41-s − 30.9·43-s + 643.·47-s − 99.7·49-s + 40.2·61-s + 67.1·63-s + 1.09e3·67-s + 990.·69-s − 594.·81-s − 1.14e3·83-s + 1.45e3·87-s − 1.38e3·89-s − 378·101-s + 1.98e3·103-s + 1.77e3·107-s − 1.97e3·109-s + ⋯
L(s)  = 1  + 0.916·3-s − 0.842·7-s − 0.159·9-s − 0.772·21-s + 1.88·23-s − 1.06·27-s + 1.95·29-s + 1.75·41-s − 0.109·43-s + 1.99·47-s − 0.290·49-s + 0.0844·61-s + 0.134·63-s + 1.99·67-s + 1.72·69-s − 0.815·81-s − 1.51·83-s + 1.79·87-s − 1.65·89-s − 0.372·101-s + 1.89·103-s + 1.59·107-s − 1.73·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.489981020\)
\(L(\frac12)\) \(\approx\) \(2.489981020\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 4.76T + 27T^{2} \)
7 \( 1 + 15.5T + 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 + 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 - 207.T + 1.21e4T^{2} \)
29 \( 1 - 306T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 + 5.06e4T^{2} \)
41 \( 1 - 460.T + 6.89e4T^{2} \)
43 \( 1 + 30.9T + 7.95e4T^{2} \)
47 \( 1 - 643.T + 1.03e5T^{2} \)
53 \( 1 + 1.48e5T^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 - 40.2T + 2.26e5T^{2} \)
67 \( 1 - 1.09e3T + 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 + 3.89e5T^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 + 1.14e3T + 5.71e5T^{2} \)
89 \( 1 + 1.38e3T + 7.04e5T^{2} \)
97 \( 1 + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.665100365893924827949272038506, −9.010469382426616817428277542851, −8.344176940099416007143729431144, −7.33014321937830420955061285894, −6.51447420771866517429125727037, −5.46672794870478567095195885314, −4.25024550019534403749302682128, −3.12543284921504462390505219026, −2.54810363095590080831875985583, −0.844886913986003852356878683321, 0.844886913986003852356878683321, 2.54810363095590080831875985583, 3.12543284921504462390505219026, 4.25024550019534403749302682128, 5.46672794870478567095195885314, 6.51447420771866517429125727037, 7.33014321937830420955061285894, 8.344176940099416007143729431144, 9.010469382426616817428277542851, 9.665100365893924827949272038506

Graph of the $Z$-function along the critical line