L(s) = 1 | − 4.47·3-s + 31.3·7-s − 6.99·9-s − 8.94·11-s + 62·13-s + 46·17-s + 107.·19-s − 140·21-s − 192.·23-s + 152.·27-s − 90·29-s − 152.·31-s + 40.0·33-s + 214·37-s − 277.·39-s − 10·41-s + 67.0·43-s − 398.·47-s + 637.·49-s − 205.·51-s + 678·53-s − 480.·57-s − 411.·59-s + 250·61-s − 219.·63-s − 49.1·67-s + 860·69-s + ⋯ |
L(s) = 1 | − 0.860·3-s + 1.69·7-s − 0.259·9-s − 0.245·11-s + 1.32·13-s + 0.656·17-s + 1.29·19-s − 1.45·21-s − 1.74·23-s + 1.08·27-s − 0.576·29-s − 0.880·31-s + 0.211·33-s + 0.950·37-s − 1.13·39-s − 0.0380·41-s + 0.237·43-s − 1.23·47-s + 1.85·49-s − 0.564·51-s + 1.75·53-s − 1.11·57-s − 0.907·59-s + 0.524·61-s − 0.438·63-s − 0.0897·67-s + 1.50·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.863316164\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.863316164\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 4.47T + 27T^{2} \) |
| 7 | \( 1 - 31.3T + 343T^{2} \) |
| 11 | \( 1 + 8.94T + 1.33e3T^{2} \) |
| 13 | \( 1 - 62T + 2.19e3T^{2} \) |
| 17 | \( 1 - 46T + 4.91e3T^{2} \) |
| 19 | \( 1 - 107.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 192.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 90T + 2.43e4T^{2} \) |
| 31 | \( 1 + 152.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 214T + 5.06e4T^{2} \) |
| 41 | \( 1 + 10T + 6.89e4T^{2} \) |
| 43 | \( 1 - 67.0T + 7.95e4T^{2} \) |
| 47 | \( 1 + 398.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 678T + 1.48e5T^{2} \) |
| 59 | \( 1 + 411.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 250T + 2.26e5T^{2} \) |
| 67 | \( 1 + 49.1T + 3.00e5T^{2} \) |
| 71 | \( 1 + 366.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 522T + 3.89e5T^{2} \) |
| 79 | \( 1 - 876.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 380.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 970T + 7.04e5T^{2} \) |
| 97 | \( 1 - 934T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12092675409220532919835194388, −8.892580047304017788719983262279, −8.076035840253959699687719381800, −7.47013178482860324818226382293, −6.00945740828126735454415404612, −5.56682118630697948194225108388, −4.65714227247657406979947700953, −3.51767793227875758064216706773, −1.88824811773703890918732554887, −0.840775526899223863317129440486,
0.840775526899223863317129440486, 1.88824811773703890918732554887, 3.51767793227875758064216706773, 4.65714227247657406979947700953, 5.56682118630697948194225108388, 6.00945740828126735454415404612, 7.47013178482860324818226382293, 8.076035840253959699687719381800, 8.892580047304017788719983262279, 10.12092675409220532919835194388