L(s) = 1 | + 0.221·3-s + 22.7·7-s − 26.9·9-s − 66.8·11-s + 32.9·13-s − 35.9·17-s + 44.0·19-s + 5.04·21-s + 139.·23-s − 11.9·27-s + 134.·29-s + 229.·31-s − 14.8·33-s − 79.1·37-s + 7.29·39-s + 384.·41-s − 251.·43-s − 241.·47-s + 176.·49-s − 7.96·51-s + 222·53-s + 9.75·57-s − 552.·59-s + 494.·61-s − 614.·63-s + 574.·67-s + 30.7·69-s + ⋯ |
L(s) = 1 | + 0.0426·3-s + 1.23·7-s − 0.998·9-s − 1.83·11-s + 0.702·13-s − 0.512·17-s + 0.531·19-s + 0.0524·21-s + 1.26·23-s − 0.0851·27-s + 0.863·29-s + 1.32·31-s − 0.0780·33-s − 0.351·37-s + 0.0299·39-s + 1.46·41-s − 0.890·43-s − 0.749·47-s + 0.515·49-s − 0.0218·51-s + 0.575·53-s + 0.0226·57-s − 1.21·59-s + 1.03·61-s − 1.22·63-s + 1.04·67-s + 0.0537·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.004356532\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.004356532\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 0.221T + 27T^{2} \) |
| 7 | \( 1 - 22.7T + 343T^{2} \) |
| 11 | \( 1 + 66.8T + 1.33e3T^{2} \) |
| 13 | \( 1 - 32.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + 35.9T + 4.91e3T^{2} \) |
| 19 | \( 1 - 44.0T + 6.85e3T^{2} \) |
| 23 | \( 1 - 139.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 134.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 229.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 79.1T + 5.06e4T^{2} \) |
| 41 | \( 1 - 384.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 251.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 241.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 222T + 1.48e5T^{2} \) |
| 59 | \( 1 + 552.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 494.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 574.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 654.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.13e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 179.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 810.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 29.7T + 7.04e5T^{2} \) |
| 97 | \( 1 + 383.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.989666137801594300401797058954, −8.723593204479776074824936855369, −8.251250937775494425313273157036, −7.53743370459018497275405810714, −6.28777874042661961667839265908, −5.22611409701318507473564196968, −4.76741064917739913092686973346, −3.16944498425605805631616837230, −2.29396303290319374988804332961, −0.789257460595709280597624444106,
0.789257460595709280597624444106, 2.29396303290319374988804332961, 3.16944498425605805631616837230, 4.76741064917739913092686973346, 5.22611409701318507473564196968, 6.28777874042661961667839265908, 7.53743370459018497275405810714, 8.251250937775494425313273157036, 8.723593204479776074824936855369, 9.989666137801594300401797058954