Properties

Label 2-80-80.69-c1-0-9
Degree 22
Conductor 8080
Sign 0.0356+0.999i0.0356 + 0.999i
Analytic cond. 0.6388030.638803
Root an. cond. 0.7992510.799251
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.13 − 0.841i)2-s + (−1.86 − 1.86i)3-s + (0.582 − 1.91i)4-s + (−1.17 + 1.90i)5-s + (−3.68 − 0.547i)6-s + 3.61·7-s + (−0.949 − 2.66i)8-s + 3.92i·9-s + (0.271 + 3.15i)10-s + (−0.0947 − 0.0947i)11-s + (−4.64 + 2.47i)12-s + (2.59 + 2.59i)13-s + (4.10 − 3.04i)14-s + (5.72 − 1.36i)15-s + (−3.32 − 2.22i)16-s + 1.89i·17-s + ⋯
L(s)  = 1  + (0.803 − 0.595i)2-s + (−1.07 − 1.07i)3-s + (0.291 − 0.956i)4-s + (−0.524 + 0.851i)5-s + (−1.50 − 0.223i)6-s + 1.36·7-s + (−0.335 − 0.941i)8-s + 1.30i·9-s + (0.0858 + 0.996i)10-s + (−0.0285 − 0.0285i)11-s + (−1.34 + 0.714i)12-s + (0.719 + 0.719i)13-s + (1.09 − 0.813i)14-s + (1.47 − 0.351i)15-s + (−0.830 − 0.556i)16-s + 0.460i·17-s + ⋯

Functional equation

Λ(s)=(80s/2ΓC(s)L(s)=((0.0356+0.999i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0356 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(80s/2ΓC(s+1/2)L(s)=((0.0356+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0356 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 8080    =    2452^{4} \cdot 5
Sign: 0.0356+0.999i0.0356 + 0.999i
Analytic conductor: 0.6388030.638803
Root analytic conductor: 0.7992510.799251
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ80(69,)\chi_{80} (69, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 80, ( :1/2), 0.0356+0.999i)(2,\ 80,\ (\ :1/2),\ 0.0356 + 0.999i)

Particular Values

L(1)L(1) \approx 0.7726690.745583i0.772669 - 0.745583i
L(12)L(\frac12) \approx 0.7726690.745583i0.772669 - 0.745583i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.13+0.841i)T 1 + (-1.13 + 0.841i)T
5 1+(1.171.90i)T 1 + (1.17 - 1.90i)T
good3 1+(1.86+1.86i)T+3iT2 1 + (1.86 + 1.86i)T + 3iT^{2}
7 13.61T+7T2 1 - 3.61T + 7T^{2}
11 1+(0.0947+0.0947i)T+11iT2 1 + (0.0947 + 0.0947i)T + 11iT^{2}
13 1+(2.592.59i)T+13iT2 1 + (-2.59 - 2.59i)T + 13iT^{2}
17 11.89iT17T2 1 - 1.89iT - 17T^{2}
19 1+(2.162.16i)T19iT2 1 + (2.16 - 2.16i)T - 19iT^{2}
23 1+5.08T+23T2 1 + 5.08T + 23T^{2}
29 1+(1.25+1.25i)T29iT2 1 + (-1.25 + 1.25i)T - 29iT^{2}
31 1+1.27T+31T2 1 + 1.27T + 31T^{2}
37 1+(2.25+2.25i)T37iT2 1 + (-2.25 + 2.25i)T - 37iT^{2}
41 18.52iT41T2 1 - 8.52iT - 41T^{2}
43 1+(1.61+1.61i)T43iT2 1 + (-1.61 + 1.61i)T - 43iT^{2}
47 1+2.53iT47T2 1 + 2.53iT - 47T^{2}
53 1+(5.67+5.67i)T53iT2 1 + (-5.67 + 5.67i)T - 53iT^{2}
59 1+(7.81+7.81i)T+59iT2 1 + (7.81 + 7.81i)T + 59iT^{2}
61 1+(3.46+3.46i)T61iT2 1 + (-3.46 + 3.46i)T - 61iT^{2}
67 1+(6.296.29i)T+67iT2 1 + (-6.29 - 6.29i)T + 67iT^{2}
71 111.3iT71T2 1 - 11.3iT - 71T^{2}
73 1+16.1T+73T2 1 + 16.1T + 73T^{2}
79 11.13T+79T2 1 - 1.13T + 79T^{2}
83 1+(3.75+3.75i)T+83iT2 1 + (3.75 + 3.75i)T + 83iT^{2}
89 1+3.98iT89T2 1 + 3.98iT - 89T^{2}
97 1+10.3iT97T2 1 + 10.3iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.05794134165821605915364406931, −12.85581539311948702786602787864, −11.67506511313990209151599122266, −11.41864009601521384996493047447, −10.43270184290162603071521968431, −8.053540303558593094235578730035, −6.75419671620032411042743437130, −5.79531599990083030304929734926, −4.20043566813844357610118406853, −1.80668676801464873908425654601, 4.10604551183961593520974466299, 4.91890419466377989052123064061, 5.82108652583974171396891983396, 7.73951864899361091134915922247, 8.815593561223988286420934456126, 10.70570499765061518694295568104, 11.51668240227791420789817771715, 12.31609816488414275459646529925, 13.68470753231209521201716079442, 15.01126885590924162123683135856

Graph of the ZZ-function along the critical line